Microstructure and Cyclic Oxidation of Yttria-Stabilized Zirconia/Nanostructured ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 Thermal Barrier Coating at 1373 K

被引:0
作者
M. Bahamirian
S. M. M. Hadavi
M. Farvizi
A. Keyvani
M. R. Rahimipour
机构
[1] Yazd University,Department of Mining and Metallurgical Engineering
[2] University of Tarbiat Modares,Department of Materials Engineering
[3] Materials and Energy Research Center,Department of Ceramics
[4] Shahrekord University,Department of Metallurgy and Materials Engineering, Faculty of Technology and Engineering
来源
Journal of Materials Engineering and Performance | 2020年 / 29卷
关键词
high-temperature oxidation; mechanical and thermomechanical properties; nanostructured ZrO; 9.5Y; O; 5.6Yb; O; 5.2Gd; O; TBCs; YSZ;
D O I
暂无
中图分类号
学科分类号
摘要
This study is intended to improve the high-temperature oxidation of nano-ZGYbY: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 in order to apply it in the new generation of defect cluster thermal barrier coatings (TBCs) through the employment of an intermediate conventional yttria-stabilized zirconia (micro-YSZ) layer between the bond coat (CoNiCrAlY) and top coat. The specimens were deposited with an atmospheric plasma spray (APS) process on IN738LC superalloy. The cyclic oxidation test was performed in air at 1373 K with 4 h in each cycle. The microstructure of the nano-ZGYbY was studied by field emission scanning electron microscopy, revealing the formation of a bimodal microstructure consisted of nanosized particles retained from the initial APS-processed nanopowder and columnar grains, whereas the microstructure of intermediate micro-YSZ layer consisted of columnar grain splats only. X-ray diffraction of TBCs confirmed the formation of non-transformable (t′) ZrO2 phase (ca2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{c}{a\sqrt 2 } $$\end{document} < 1.01) as well as the stability of this phase after oxidation. Also, applying an intermediate conventional YSZ layer with a higher CTE and KIC than that of nano-ZGYbY between the bond and top coats improved mechanical properties in new TBCs and it increased the oxidation life.
引用
收藏
页码:7080 / 7093
页数:13
相关论文
共 50 条
[41]   The Influence of the ZrO2 Solid Solution Amount on the Physicochemical Properties of Al2O3–ZrO2–Y2O3–CeO2 Powders [J].
M.Yu. Smyrnova-Zamkova ;
O.K. Ruban ;
O.I. Bykov ;
M.Ya. Holovchuk ;
T.V. Mosina ;
O.I. Khomenko ;
E.V. Dudnik .
Powder Metallurgy and Metal Ceramics, 2021, 60 :129-141
[42]   Highly Dispersive Mono-sized Nanoparticles of Y2O3-stabilized ZrO2 [J].
Tsukiyama, Keishi ;
Takasaki, Mihiro ;
Oaki, Yuya ;
Imai, Hiroaki .
CHEMISTRY LETTERS, 2019, 48 (04) :390-393
[43]   The effect of powder grain size on the microstructure and electrical properties of 8 mol% Y2O3-stabilized ZrO2 [J].
Zhang, Jianxing ;
Huang, Xiaowei ;
Zhang, He ;
Xue, Qiannan ;
Xu, Hong ;
Wang, Liangshi ;
Feng, Zongyu .
RSC ADVANCES, 2017, 7 (62) :39153-39159
[44]   Synthesis and Properties of La2O3-Doped 8 mol% Yttria-Stabilized Cubic Zirconia [J].
Bulent Aktas ;
Suleyman Tekeli ;
Serdar Salman .
Journal of Materials Engineering and Performance, 2014, 23 :294-301
[45]   Phase stability, thermal shock behavior and CMAS corrosion resistance of Yb2O3-Y2O3 co-stabilized zirconia thermal barrier coatings prepared by atmospheric plasma spraying [J].
Fang, Huanjie ;
Wang, Weize ;
Yang, Zining ;
Yang, Ting ;
Wang, Yihao ;
Huang, Jibo ;
Ye, Dongdong .
SURFACE & COATINGS TECHNOLOGY, 2021, 427
[46]   High temperature oxidation of Y2O3 partially-stabilized ZrO2 composites dispersed with Ni particles [J].
Nanko, M ;
Yoshimura, M ;
Maruyama, T .
MATERIALS TRANSACTIONS, 2003, 44 (04) :736-742
[47]   Oxidation resistance of micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) coatings on Fe-Cr alloys [J].
Yao, Mingming ;
He, Yedong ;
Zhang, Wei ;
Gao, Wei .
HIGH TEMPERATURE MATERIALS AND PROCESSES, 2006, 25 (03) :167-174
[48]   Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2 [J].
Butz, B. ;
Kruse, P. ;
Stoermer, H. ;
Gerthsen, D. ;
Mueller, A. ;
Weber, A. ;
Ivers-Tiffee, E. .
SOLID STATE IONICS, 2006, 177 (37-38) :3275-3284
[49]   Microstructure and properties of large bulk Al2O3/ZrO2 (Y2O3) composites prepared by SHS under high gravity [J].
W. Y. Liu ;
Z. M. Zhao ;
L. Zhang ;
L. Wang .
International Journal of Self-Propagating High-Temperature Synthesis, 2009, 18 (3) :180-185
[50]   Mechanochemical synthesis and thermal stability of phases in the Y2O3–Yb2O3 system [J].
Mateusz Piz ;
Elzbieta Filipek ;
Maciej Jablonski .
Journal of Thermal Analysis and Calorimetry, 2019, 138 :4313-4319