Microstructure and Cyclic Oxidation of Yttria-Stabilized Zirconia/Nanostructured ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 Thermal Barrier Coating at 1373 K

被引:0
作者
M. Bahamirian
S. M. M. Hadavi
M. Farvizi
A. Keyvani
M. R. Rahimipour
机构
[1] Yazd University,Department of Mining and Metallurgical Engineering
[2] University of Tarbiat Modares,Department of Materials Engineering
[3] Materials and Energy Research Center,Department of Ceramics
[4] Shahrekord University,Department of Metallurgy and Materials Engineering, Faculty of Technology and Engineering
来源
Journal of Materials Engineering and Performance | 2020年 / 29卷
关键词
high-temperature oxidation; mechanical and thermomechanical properties; nanostructured ZrO; 9.5Y; O; 5.6Yb; O; 5.2Gd; O; TBCs; YSZ;
D O I
暂无
中图分类号
学科分类号
摘要
This study is intended to improve the high-temperature oxidation of nano-ZGYbY: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 in order to apply it in the new generation of defect cluster thermal barrier coatings (TBCs) through the employment of an intermediate conventional yttria-stabilized zirconia (micro-YSZ) layer between the bond coat (CoNiCrAlY) and top coat. The specimens were deposited with an atmospheric plasma spray (APS) process on IN738LC superalloy. The cyclic oxidation test was performed in air at 1373 K with 4 h in each cycle. The microstructure of the nano-ZGYbY was studied by field emission scanning electron microscopy, revealing the formation of a bimodal microstructure consisted of nanosized particles retained from the initial APS-processed nanopowder and columnar grains, whereas the microstructure of intermediate micro-YSZ layer consisted of columnar grain splats only. X-ray diffraction of TBCs confirmed the formation of non-transformable (t′) ZrO2 phase (ca2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{c}{a\sqrt 2 } $$\end{document} < 1.01) as well as the stability of this phase after oxidation. Also, applying an intermediate conventional YSZ layer with a higher CTE and KIC than that of nano-ZGYbY between the bond and top coats improved mechanical properties in new TBCs and it increased the oxidation life.
引用
收藏
页码:7080 / 7093
页数:13
相关论文
共 50 条
[31]   Microlayered bioimplants based on ZrO2−Y2O3−CeO2−Al2O3 [J].
E. V. Dudnik ;
A. V. Shevchenko ;
A. K. Ruban ;
V. V. Kurenkova ;
L. M. Lopato .
Powder Metallurgy and Metal Ceramics, 2009, 48 :73-76
[32]   Microstructural design of ZrO2–Y2O3–CeO2–Al2O3 materials [J].
E. V. Dudnik ;
A. V. Shevchenko ;
A. K. Ruban ;
V. P. Red’ko ;
L. M. Lopato .
Powder Metallurgy and Metal Ceramics, 2011, 49 :528-536
[33]   Microstructure and Thermal Cycling Behavior of Ta2O5 and Y2O3 Co-doped ZrO2 Coatings [J].
Chen, Dong ;
Lu, Jing ;
Sun, Chengchuan ;
Wang, Quansheng ;
Ning, Xianjin .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2023, 32 (05) :1327-1337
[34]   Nano/micro-laminated (ZrO2-Y2O3)/(Al2O3-Y2O3) composite coatings and their oxidation resistance [J].
Yao, Mingming ;
He, Yedong ;
Wang, Deren ;
Gao, Wei .
OXIDATION OF METALS, 2007, 68 (1-2) :1-8
[35]   Preparation and conductivity of TiO2-doped Y2O3-stabilized ZrO2 ceramic [J].
Lei, X. L. ;
Zhang, D. M. ;
Zhang, L. M. .
COMPOSITE MATERIALS V, 2007, 351 :120-+
[36]   Preparation and conductivity of TiO2-doped Y2O3-stabilized ZrO2 ceramic [J].
State Key Lab. of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China .
Key Eng Mat, 2007, (120-125) :120-125
[37]   Hot-corrosion resistance and phase stability of Yb2O3-Gd2O3-Y2O3 costabilized zirconia-based thermal barrier coatings against Na2SO4 + V2O5 molten salts [J].
Song, Dowon ;
Song, Taeseup ;
Paik, Ungyu ;
Lyu, Guanlin ;
Kim, Junseong ;
Yang, SeungCheol ;
Jung, Yeon-Gil .
SURFACE & COATINGS TECHNOLOGY, 2020, 400
[38]   Effect of La2O3 on Grain Refinement and Thermal Conductivity of 6 mol % Y2O3–ZrO2 Fibers [J].
Xiaotong Kangkang Yuan ;
Xinqiang Jin ;
Guanghui Wang ;
Luyi Zhang ;
Dong Zhu .
Russian Journal of Inorganic Chemistry, 2019, 64 :1464-1468
[39]   Effect of lattice defects on thermal conductivity of Ti-doped, Y2O3-stabilized ZrO2 [J].
Zhao, Meng ;
Pan, Wei .
ACTA MATERIALIA, 2013, 61 (14) :5496-5503
[40]   Microstructure and properties of Al2O3-ZrO2-Y2O3 coatings during high temperature and thermal shock resistance [J].
Wen-Wei Sun ;
Xiao-Long Wang ;
Xiao-Wen Sun ;
Yong Yang ;
Chen Zhang ;
Yan-Wei Wang ;
Yu-Hang Cui ;
Yu-Duo Ma .
Applied Physics A, 2020, 126