To the Problem of a Point Source in an Inhomogeneous Medium

被引:0
作者
S. T. Gataullin
T. M. Gataullin
机构
[1] MIREA—Russian Technological University,
[2] Moscow Technical University of Communications and Informatics,undefined
来源
Mathematical Notes | 2023年 / 114卷
关键词
Maslov canonical operator; tropical cryptography; second-order elliptic operator; Hamiltonian system; asymptotics of the fundamental solution; Hankel function of the first kind;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1212 / 1216
页数:4
相关论文
共 27 条
[1]  
Keldysh M. V.(1971)On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators Russian Math. Surveys 26 15-44
[2]  
Kucherenko V. V.(1969)Quasiclassical asymptotics of a point-source function for the stationary Schrödinger equation Theoret. Math. Phys. 1 294-310
[3]  
Gataulin T. M.(1977)Asymptotic behavior of the fundamental solution of an elliptic equation with respect to a complex parameter Math. Notes 21 210-217
[4]  
Kucherenko V. V.(1972)Some properties of the short wave asymptotic behavior of the fundamental solution of the equation Trudy MIEM 0 32-55
[5]  
Kucherenko V. V.(1968)Short wave asymptotics of the Green’s function for the U.S.S.R. Comput. Math. Math. Phys. 8 294-302
[6]  
Babich V. M.(1965)-dimensional wave equation in an inhomogeneous medium Comput. Math. Math. Phys. 0 247-251
[7]  
Babich V. M.(2019)The short wave asymptotic form of the solution for the problem of a point source in an inhomogeneous medium J. Math. Sci. (N. Y.) 243 634-639
[8]  
Anikin A. Yu.(2023)A point source of electromagnetic waves in an inhomogeneous medium: a high frequency ansatz and the dual nonstationary singular solution Theoret. Math. Phys. 214 1-23
[9]  
Dobrokhotov S. Yu.(2017)Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides Dokl. Math. 96 406-410
[10]  
Nazaikinskii V. E.(1979)The Maslov canonical operator on a pair of Lagrangian manifolds and asymptotics of the solutions of stationary equations with localized right-hand sides Comm. Pure Appl. Math. 32 483-519