Global Bifurcation of Anti-plane Shear Fronts

被引:0
作者
Robin Ming Chen
Samuel Walsh
Miles H. Wheeler
机构
[1] University of Pittsburgh,Department of Mathematics
[2] University of Missouri,Department of Mathematics
[3] University of Bath,Department of Mathematical Sciences
来源
Journal of Nonlinear Science | 2021年 / 31卷
关键词
Global bifurcation; Nonlinear elasticity; Front; Anti-plane shear; 35B32; 35J60; 74B20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider anti-plane shear deformations of an incompressible elastic solid whose reference configuration is an infinite cylinder with a cross section that is unbounded in one direction. For a class of generalized neo-Hookean strain energy densities and live body forces, we construct unbounded curves of front-type solutions using global bifurcation theory. Some of these curves contain solutions with deformations of arbitrarily large magnitude.
引用
收藏
相关论文
共 39 条
[1]  
Chen RM(2018)Existence and qualitative theory for stratified solitary water waves Ann. Inst. H. Poincaré Anal. Non Linéaire 35 517-576
[2]  
Walsh S(2020)Large-amplitude internal fronts in two-fluid systems Comptes Rendus. Math. 358 1073-1083
[3]  
Wheeler MH(1973)Bifurcation theory for analytic operators Proc. Lond. Math. Soc. (3) 26 359-384
[4]  
Chen RM(1973)Global structure of the solutions of non-linear real analytic eigenvalue problems Proc. Lond. Math. Soc. (3) 27 747-765
[5]  
Walsh S(1973)Rectilinear steady flow of simple fluids Proc. R. Soc. Lond. A 332 311-333
[6]  
Wheeler MH(2005)Fredholm and properness properties of quasilinear elliptic systems of second order Proc. Edinb. Math. Soc. (2) 48 91-124
[7]  
Dancer EN(2009)Global continuation for quasilinear elliptic systems on Adv. Nonlinear Stud. 9 727-762
[8]  
Dancer EN(2019) and the equations of elastostatics Arch. Rational Mech. Anal. 232 1207-1225
[9]  
Fosdick R(1990)Classical injective solutions in the large in incompressible nonlinear elasticity Arch. Rational Mech. Anal. 113 299-311
[10]  
Serrin J(2007)Symmetry and nodal properties in the global bifurcation analysis of quasi-linear elliptic equations Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 1117-1134