Asymptotic distribution of singular values for matrices in a spherical ensemble

被引:0
作者
Tikhomirov A.N. [1 ]
机构
[1] Department of Mathematics, Komi Scientific Center of UBRAS, Syktyvkar
基金
俄罗斯基础研究基金会;
关键词
empirical spectral distribution function; random matrix; spherical ensemble; spherical law;
D O I
10.3103/S105513441404004X
中图分类号
学科分类号
摘要
We consider the asymptotic behavior of the singular values of a so-called spherical ensemble of random matrices of large dimension. These are matrices of the form XY-1, where X and Y are independent matrices of dimension n × n whose symmetric entries have correlation coefficient ρ. We show that the limit distribution of the singular values is independent of the correlation coefficient and has the density where stands for the indicator of an event A. © 2014, Allerton Press, Inc.
引用
收藏
页码:282 / 303
页数:21
相关论文
共 27 条
[1]  
Alastuey A., Jancovici B., On the classical two-dimensional one-component Coulomb plasma, J. Physique, 42, (1981)
[2]  
Bai Z.D., Circular law, Ann. Probab., 25, (1997)
[3]  
Bai Z.D., Silverstein J., Spectral Analysis of Large Dimensional Random Matrices, (2009)
[4]  
Bordenave C., On the spectrum of sum and product of non-Hermitian random matrices, Electron. Comm. Probab., 16, (2011)
[5]  
Bordenave C., Chafai D., Around the Circular Law, (2012)
[6]  
Edelman A., Kostlan E., Shub M., How many eigenvalues of a random matrix are real?, J. Amer. Math. Soc., 7, (1994)
[7]  
Fischmann J., Forrester P., One-component plasma on a spherical annulus and a random matrix ensemble, J. Stat. Mech.: Theory and Experiment, (2011)
[8]  
Forrester P., Mays A., Pfaffian point process for the Gaussian real generalized eigenvalue problem, Probab. Theory Related Fields, 154, (2012)
[9]  
Fyodorov Y.V., Khoruzhenko B.A., Sommers H.Y., Almost-Hermitian random matrices: Eigenvalue density in the complex plane, Phys. Lett., A, 226, (1997)
[10]  
Ginibre J., Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys., 6, (1965)