Algorithms on Minimizing the Maximum Sensor Movement for Barrier Coverage of a Linear Domain

被引:0
|
作者
Danny Z. Chen
Yan Gu
Jian Li
Haitao Wang
机构
[1] University of Notre Dame,Department of Computer Science and Engineering
[2] Tsinghua University,Department of Computer Science and Technology
[3] Tsinghua University,Institute for Interdisciplinary Information Sciences (IIIS)
[4] Utah State University,Department of Computer Science
来源
Discrete & Computational Geometry | 2013年 / 50卷
关键词
Barrier coverage; Min-max sensor movement; Linear barrier; Algorithms; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the problem of moving n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} sensors on a line to form a barrier coverage of a specified segment of the line such that the maximum moving distance of the sensors is minimized. Previously, it was an open question whether this problem on sensors with arbitrary sensing ranges is solvable in polynomial time. We settle this open question positively by giving an O(n2logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2\log n)$$\end{document} time algorithm. For the special case when all sensors have the same-size sensing range, the previously best solution takes O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} time. We present an O(nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n\log n)$$\end{document} time algorithm for this case; further, if all sensors are initially located on the coverage segment, our algorithm takes O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} time. Also, we extend our techniques to the cycle version of the problem where the barrier coverage is for a simple cycle and the sensors are allowed to move only along the cycle. For sensors with the same-size sensing range, we solve the cycle version in O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n)$$\end{document} time, improving the previously best O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^2)$$\end{document} time solution.
引用
收藏
页码:374 / 408
页数:34
相关论文
共 50 条
  • [1] Algorithms on Minimizing the Maximum Sensor Movement for Barrier Coverage of a Linear Domain
    Chen, Danny Z.
    Gu, Yan
    Li, Jian
    Wang, Haitao
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (02) : 374 - 408
  • [2] An Improved Algorithm for Minimizing the Maximum Sensor Movement in Linear Barrier Coverage
    He, Zhiwei
    Zhang, Baoxian
    2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [3] Minimizing the Maximum Sensor Movement for Barrier Coverage in the Plane
    Li, Shuangjuan
    Shen, Hong
    2015 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (INFOCOM), 2015,
  • [4] On Minimizing the Maximum Sensor Movement for Barrier Coverage of a Line Segment
    Czyzowicz, J.
    Kranakis, E.
    Krizanc, D.
    Lambadaris, I.
    Narayanan, L.
    Opatrny, J.
    Stacho, L.
    Urrutia, J.
    Yazdani, M.
    AD-HOC, MOBILE AND WIRELESS NETWORKS, PROCEEDINGS, 2009, 5793 : 194 - +
  • [5] Minimizing the Maximum Sensor Movement Towards Grid Points for Barrier Coverage
    Li, Shuangjuan
    Shen, Hong
    2015 SEVENTH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING (PAAP), 2015, : 116 - 121
  • [6] Minimizing maximum movement of sensors for line barrier coverage in the plane
    Li, Shuangjuan
    Shen, Hong
    COMPUTER NETWORKS, 2019, 163
  • [7] On Minimizing the Maximum Sensor Movement to Construct a Horizontal Barrier
    Zhang, Xiaoyun
    Qiao, Daji
    2017 IEEE 36TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2017,
  • [8] Minimizing the total cost of barrier coverage in a linear domain
    Zhang, Xiao
    Fan, Haosheng
    Lee, Victor C. S.
    Li, Minming
    Zhao, Yingchao
    Liu, Chuang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (02) : 434 - 457
  • [9] Minimizing the total cost of barrier coverage in a linear domain
    Xiao Zhang
    Haosheng Fan
    Victor C. S. Lee
    Minming Li
    Yingchao Zhao
    Chuang Liu
    Journal of Combinatorial Optimization, 2018, 36 : 434 - 457
  • [10] Maximum Barrier Coverage Deployment Algorithms in Wireless Sensor Networks
    Tri Gia Nguyen
    So-In, Chakchai
    Nhu Gia Nguyen
    2016 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2016, : 562 - 566