On the convergence of a smoothed penalty algorithm for semi-infinite programming

被引:0
|
作者
Qian Liu
Changyu Wang
Xinmin Yang
机构
[1] Shandong Normal University,Department of Mathematics
[2] Qufu Normal University,Institute of Operations Research
[3] Chongqing Normal University,Department of Mathematics
关键词
Semi-infinite programming; Penalty algorithm; Global convergence; exact penalty function; Smooth approximation;
D O I
暂无
中图分类号
学科分类号
摘要
For semi-infinite programming (SIP), we consider a class of smoothed penalty functions, which approximate the exact \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_\rho (0<\rho \le 1)$$\end{document} penalty functions. On base of the smoothed penalty function, we present a feasible penalty algorithm for solving SIP. Without any boundedness condition or coercive condition, we establish the global convergence theorem. Then we present a perturbation theorem for this algorithm and obtain a necessary and sufficient condition for the convergence to the optimal value of SIP. Under Mangasarian–Fromovitz constrained qualification condition, we further discuss the convergence properties for the algorithm based upon a subclass of smooth approximations to the exact \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_\rho $$\end{document} penalty function. Finally, numerical results are given.
引用
收藏
页码:203 / 220
页数:17
相关论文
共 50 条
  • [31] Comparative study of RPSALG algorithm for convex semi-infinite programming
    A. Auslender
    A. Ferrer
    M. A. Goberna
    M. A. López
    Computational Optimization and Applications, 2015, 60 : 59 - 87
  • [32] A NEW PRIMAL ALGORITHM FOR SEMI-INFINITE LINEAR-PROGRAMMING
    ANDERSON, EJ
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1985, 259 : 108 - 122
  • [33] AN INTERIOR POINT ALGORITHM FOR SEMI-INFINITE LINEAR-PROGRAMMING
    FERRIS, MC
    PHILPOTT, AB
    MATHEMATICAL PROGRAMMING, 1989, 43 (03) : 257 - 276
  • [34] Modified gradient sampling algorithm for nonsmooth semi-infinite programming
    Shang, Tianyou
    Su, Ke
    Zhao, Bing
    Wei, Yanshu
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) : 4425 - 4450
  • [35] AN EXTENSION OF THE SIMPLEX ALGORITHM FOR SEMI-INFINITE LINEAR-PROGRAMMING
    ANDERSON, EJ
    LEWIS, AS
    MATHEMATICAL PROGRAMMING, 1989, 44 (03) : 247 - 269
  • [36] Comparative study of RPSALG algorithm for convex semi-infinite programming
    Auslender, A.
    Ferrer, A.
    Goberna, M. A.
    Lopez, M. A.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (01) : 59 - 87
  • [37] A semi-infinite quadratic programming algorithm with applications to channel equalization
    Tran, T
    Dahl, M
    Claesson, I
    SEVENTH INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND ITS APPLICATIONS, VOL 1, PROCEEDINGS, 2003, : 653 - 656
  • [38] An inexact primal-dual algorithm for semi-infinite programming
    Bo Wei
    William B. Haskell
    Sixiang Zhao
    Mathematical Methods of Operations Research, 2020, 91 : 501 - 544
  • [39] A smoothing Levenberg-Marquardt algorithm for semi-infinite programming
    Jin, Ping
    Ling, Chen
    Shen, Huifei
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (03) : 675 - 695
  • [40] Modified gradient sampling algorithm for nonsmooth semi-infinite programming
    Tianyou Shang
    Ke Su
    Bing Zhao
    Yanshu Wei
    Journal of Applied Mathematics and Computing, 2023, 69 : 4425 - 4450