On the convergence of a smoothed penalty algorithm for semi-infinite programming

被引:0
|
作者
Qian Liu
Changyu Wang
Xinmin Yang
机构
[1] Shandong Normal University,Department of Mathematics
[2] Qufu Normal University,Institute of Operations Research
[3] Chongqing Normal University,Department of Mathematics
关键词
Semi-infinite programming; Penalty algorithm; Global convergence; exact penalty function; Smooth approximation;
D O I
暂无
中图分类号
学科分类号
摘要
For semi-infinite programming (SIP), we consider a class of smoothed penalty functions, which approximate the exact \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_\rho (0<\rho \le 1)$$\end{document} penalty functions. On base of the smoothed penalty function, we present a feasible penalty algorithm for solving SIP. Without any boundedness condition or coercive condition, we establish the global convergence theorem. Then we present a perturbation theorem for this algorithm and obtain a necessary and sufficient condition for the convergence to the optimal value of SIP. Under Mangasarian–Fromovitz constrained qualification condition, we further discuss the convergence properties for the algorithm based upon a subclass of smooth approximations to the exact \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_\rho $$\end{document} penalty function. Finally, numerical results are given.
引用
收藏
页码:203 / 220
页数:17
相关论文
共 50 条
  • [1] On the convergence of a smoothed penalty algorithm for semi-infinite programming
    Liu, Qian
    Wang, Changyu
    Yang, Xinmin
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2013, 78 (02) : 203 - 220
  • [2] GLOBAL CONVERGENCE OF A CLASS OF SMOOTH PENALTY METHODS FOR SEMI-INFINITE PROGRAMMING
    Changyu WANG Institute of Operations Research
    JournalofSystemsScience&Complexity, 2011, 24 (04) : 769 - 783
  • [3] Global convergence of a class of smooth penalty methods for semi-infinite programming
    Changyu Wang
    Haiyan Zhang
    Fang Liu
    Journal of Systems Science and Complexity, 2011, 24 : 769 - 783
  • [4] Global convergence of a class of smooth penalty methods for semi-infinite programming
    Wang, Changyu
    Zhang, Haiyan
    Liu, Fang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2011, 24 (04) : 769 - 783
  • [5] A Hyperbolic Penalty Filter Method for Semi-Infinite Programming
    Pereira, Ana Isabel P. N.
    Fernandes, Edite M. G. P.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 269 - +
  • [6] AN EXACT PENALTY-FUNCTION FOR SEMI-INFINITE PROGRAMMING
    CONN, AR
    GOULD, NIM
    MATHEMATICAL PROGRAMMING, 1987, 37 (01) : 19 - 40
  • [7] Penalty and Smoothing Methods for Convex Semi-Infinite Programming
    Auslender, Alfred
    Goberna, Miguel A.
    Lopez, Marco A.
    MATHEMATICS OF OPERATIONS RESEARCH, 2009, 34 (02) : 303 - 319
  • [8] Discretization in semi-infinite programming: the rate of convergence
    G. Still
    Mathematical Programming, 2001, 91 : 53 - 69
  • [9] Discretization in semi-infinite programming: the rate of convergence
    Still, G
    MATHEMATICAL PROGRAMMING, 2001, 91 (01) : 53 - 69
  • [10] A parallel algorithm for semi-infinite programming
    Zakovic, S
    Rustem, B
    Asprey, SP
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2003, 44 (1-2) : 377 - 390