Factorization of weakly continuous differentiable mappings

被引:0
|
作者
Raffaella Cilia
Joaquín M. Gutiérrez
机构
[1] Università di Catania,Dipartimento di Matematica Facoltà di Scienze
[2] Universidad Politécnica de Madrid,Departamento de Matemática Aplicada ETS de Ingenieros Industriales
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2009年 / 40卷
关键词
Fréchet differentiable mapping; Gâteaux differentiable mapping; weakly uniformly continuous mapping on bounded sets; factorization of differentiable mappings; Primary: 46E50; Secondary: 46G05;
D O I
暂无
中图分类号
学科分类号
摘要
Given real Banach spaces X and Y, let Cwbu1(X, Y) be the space, introduced by R.M. Aron and J.B. Prolla, of C1 mappings from X into Y such that the mappings and their derivatives are weakly uniformly continuous on bounded sets. We show that f ∈ Cwbu1(X, Y) if and only if f may be written in the form f = g ∘ S, where the intermediate space is normed, S is a precompact operator, and g is a Gâteaux differentiable mapping with some additional properties.
引用
收藏
页码:371 / 380
页数:9
相关论文
共 50 条
  • [1] Factorization of weakly continuous differentiable mappings
    Cilia, Raffaella
    Gutierrez, Joaquin M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (03): : 371 - 380
  • [2] Weakly sequentially continuous differentiable mappings
    Cilia, Raffaella
    Gutierrez, Joaquin M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (02) : 609 - 623
  • [3] Factorization of weakly continuous holomorphic mappings
    Gonzalez, M
    Gutierrez, JM
    STUDIA MATHEMATICA, 1996, 118 (02) : 117 - 133
  • [4] COMPACT FACTORIZATION OF DIFFERENTIABLE MAPPINGS
    Cilia, Raffaella
    Gutierrez, Joaquin M.
    Saluzzo, Giuseppe
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (05) : 1743 - 1752
  • [5] Weakly differentiable mappings between manifolds
    Hajlasz, Piotr
    Iwaniec, Tadeusz
    Maly, Jan
    Onninen, Jani
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 192 (899) : 1 - +
  • [6] WEAKLY CONTINUOUS MAPPINGS
    NOIRI, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 46 (01) : 120 - 124
  • [7] ON DISTRIBUTION-FUNCTIONS OF THE DERIVATIVES OF WEAKLY DIFFERENTIABLE MAPPINGS
    MIZEL, VJ
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (02): : 211 - 216
  • [8] Soft ω-θ-Continuous and Soft Weakly θω-Continuous Mappings
    Ghour, Samer Al
    Al-Saadi, Hanan
    MATHEMATICS, 2023, 11 (19)
  • [9] The spectrum of an algebra of weakly continuous holomorphic mappings
    Burlandy, PA
    Moraes, LA
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2000, 11 (04): : 525 - 532
  • [10] INVARIANCE OF DOMAIN THEOREM FOR WEAKLY CONTINUOUS MAPPINGS
    KOLOMY, J
    MATHEMATISCHE NACHRICHTEN, 1973, 58 (1-6) : 137 - 144