Upper and Lower Bounds for Noncommutative Perspectives of Operator Monotone Functions: the Case of Second Variable

被引:0
作者
Silvestru Sever Dragomir
机构
[1] Victoria University,Mathematics, College of Engineering & Science
来源
Acta Mathematica Vietnamica | 2022年 / 47卷
关键词
Noncommutative perspectives; Relative operator entropy; Operator monotone functions; 47A63; 47A30; 15A60; 26D15; 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
Assume that the function f:[0,∞)→ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:[0,\infty )\rightarrow \mathbb {R}$\end{document} is operator monotone in [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,\infty )$\end{document}. We can define the perspectivePfB,A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {P}_{f}\left (B,A\right ) $\end{document} by setting PfB,A:=A1/2fA−1/2BA−1/2A1/2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}_{f}\left( B,A\right) :=A^{1/2}f\left( A^{-1/2}BA^{-1/2}\right) A^{1/2}, $$\end{document}where A, B > 0. In this paper, we show among others that, if σ ≥ C ≥ ρ > 0, D > 0, ς ≥ Q ≥ τ > 0 and 0 < n ≤ D − C ≤ N for some constants ρ, σ, ς, τ, n, N, then 0≤nNς2Pfς,N+σ−Pfς,σQ2≤PfQ,D−PfQ,C≤Nnτ2Pfτ,n+ρ−Pfτ,ρQ2.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{@{}rcl@{}} 0& \le& \frac{n}{N{\varsigma}^{2}}\left[ \mathcal{P}_{f}\left( {\varsigma} ,N+\sigma \right) -\mathcal{P}_{f}\left( {\varsigma} ,\sigma \right) \right] Q^{2} \\ & \leq& \mathcal{P}_{f}\left( Q,D\right) -\mathcal{P}_{f}\left( Q,C\right) \\ & \leq& \frac{N}{n\tau^{2}}\left[ \mathcal{P}_{f}\left( \tau ,n+\rho \right) -\mathcal{P}_{f}\left( \tau ,\rho \right) \right] Q^{2}. \end{array} $$\end{document}Applications for the weighted operator geometric mean and the perspective Pln⋅+1B,A:=A1/2lnA−1/2BA−1/2+1A1/2,A,B>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}_{\ln \left( \cdot +1\right) }\left( B,A\right) :=A^{1/2}\ln \left( A^{-1/2}BA^{-1/2}+1\right) A^{1/2},~ A,B>0 $$\end{document}are also provided.
引用
收藏
页码:581 / 595
页数:14
相关论文
共 17 条
[1]  
Ebadian A(2011)Perspectives of matrix convex functions Proc. Natl. Acad. Sci. USA 108 7313-7314
[2]  
Nikoufar I(2009)A matrix convexity approach to some celebrated quantum inequalities Proc. Natl. Acad. Sci. USA 106 1006-1008
[3]  
Gordji ME(2014)Noncomutative perspectives Ann. Funct. Anal. 5 74-79
[4]  
Effros EG(1989)Uhlmann’s interpolational method for operator means Math. Japon. 34 541-547
[5]  
Effros EG(1989)Relative operator entropy in noncommutative information theory Math. Japon. 34 341-348
[6]  
Hansen F(2015)Precise lower bound of f(A) − f(B) for A > B > 0 and non-constant operator monotone function f on $[0,\infty )$[0,∞) J. Math. Inequal. 9 47-52
[7]  
Fujii JI(1951)Beiträge zur Störungsteorie der Spektralzerlegung Math. Ann. 123 415-438
[8]  
Kamei E(1934)Über monotone matrix funktionen Math. Z. 38 177-216
[9]  
Fujii JI(1961)A note on the entropy for operator algebras Proc. Japan Acad. 37 149-154
[10]  
Kamei E(2018)The converse of the Loewner–Heinz inequality via perspective Linear Multilinear Algebra 66 243-249