On randomized partial block Kaczmarz method for solving huge linear algebraic systems

被引:0
作者
Ran-Ran Li
Hao Liu
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[2] MIIT,Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (NUAA)
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Huge linear algebraic systems; Kaczmarz method; Randomized block Kaczmarz method; Randomized partial method; Convergence property; 65F10; 65F20; 15A06;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the numerical solution of huge linear algebraic systems, in which the number of rows or columns of the coefficient matrix A is greater than 100,000. Considering the idea of K-means algorithm and removing partial row vectors with small initial residuals, we propose a partitioning strategy and construct the randomized partial block Kaczmarz method. The working block of each iteration is randomly selected by using the uniform distribution, and the convergence property is also analyzed. Numerical examples illustrate the effectiveness of the proposed method.
引用
收藏
相关论文
共 58 条
[11]  
Bai Z-Z(2019)On the error estimate of the randomized double block Kaczmarz method Appl Math Comput 370 1-25
[12]  
Wu W-T(2011)The University of Florida sparse matrix collection ACM Trans Math Softw 38 932-933
[13]  
Barboteu M(2015)A fractional step method for the dynamic electro-thermal modelling of device structures IFAC-PapersOnLine 48 37-67
[14]  
Djehaf N(1981)Iterative algorithms for large partitioned linear systems, with applications to image reconstruction Linear Algebra Appl 40 215-231
[15]  
Martel M(2010)GPU computing with Kaczmarz’s and other iterative algorithms for linear systems Parallel Comput 36 1-12
[16]  
Bai Z-Z(1980)Block-iterative methods for consistent and inconsistent linear equations Numer Math 35 1016-1022
[17]  
Wang L(1973)Computerized transverse axial scanning (tomography): part I, description of system Brit J Radiol 46 355-357
[18]  
Muratova GV(2022)Randomized block Kaczmarz methods with k-means clustering for solving large linear systems J Comput Appl Math 403 178-200
[19]  
Byrne C(1937)Angenäherte auflösung von systemen linearer gleichungen Bulletin International de l’Académie Polonaise des Sciences et des Lettres Série A 35 199-221
[20]  
Censor Y(2021)On greedy randomized block Kaczmarz method for consistent linear systems Linear Algebra Appl 616 322-343