On multiplicative (generalized)-derivations in prime and semiprime rings

被引:0
作者
Basudeb Dhara
Shakir Ali
机构
[1] Belda College,Department of Mathematics
[2] Belda,Department of Mathematics
[3] Aligarh Muslim University,undefined
来源
Aequationes mathematicae | 2013年 / 86卷
关键词
16N60; 16U80; 16W25; Prime ring; semiprime ring; left ideal; derivation; multiplicative derivation; generalized derivation; multiplicative (generalized)-derivation;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a ring. A map F:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F : R \rightarrow R}$$\end{document} is called a multiplicative (generalized)-derivation if F(xy) = F(x)y + xg(y) is fulfilled for all x,y∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x, y \in R}$$\end{document} where g:R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g : R \rightarrow R}$$\end{document} is any map (not necessarily derivation). The main objective of the present paper is to study the following situations: (i) F(xy)±xy∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F(xy) \pm xy \in Z}$$\end{document}, (ii) F(xy)±yx∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F(xy) \pm yx \in Z}$$\end{document}, (iii) F(x)F(y)±xy∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F(x)F(y) \pm xy \in Z}$$\end{document} and (iv) F(x)F(y)±yx∈Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F(x)F(y) \pm yx \in Z}$$\end{document} for all x, y in some appropriate subset of R. Moreover, some examples are also given.
引用
收藏
页码:65 / 79
页数:14
相关论文
共 33 条
  • [1] Andima S.(2010)Commutativity of rings with derivations Acta Math. Hung. 128 1-14
  • [2] Pajoohesh H.(2007)Some commutativity theorems for rings with generalized derivations Southeast Asian Bull. Math. 31 415-421
  • [3] Ashraf M.(2001)On derivations and commutativity in prime rings East-West J. Math. 3 87-91
  • [4] Ali A.(1987)Centralizing maps of semiprime rings Can. Math. Bull. 30 92-101
  • [5] Ali S.(1995)On derivations and commutativity in prime rings Acta Math. Hung. 66 337-343
  • [6] Ashraf M.(1991)On the distance of the composition of two derivations to the generalized derivations Glasgow Math. J. ( 33 89-93
  • [7] Rehman N.(2004)Commuting maps: A survey Taiwanese J. Math. 8 361-397
  • [8] Bell H.E.(1991)When is a multiplicative derivation additive Int. J. Math. Math. Sci. 14 615-618
  • [9] Martindale W.S.(1992)Remarks on derivations on semiprime rings Int. J. Math. Math. Sci. 15 205-206
  • [10] Bell H.E.(1997)Multiplicative generalized derivations which are additive East-West J. Math. 9 31-37