Percolation Clusters as Generators for Orientation Ordering

被引:0
作者
Rahul Roy
Hideki Tanemura
机构
[1] Indian Statistical Institute,Department of Mathematics and Informatics, Faculty of Science
[2] Chiba University,undefined
来源
Journal of Statistical Physics | 2017年 / 168卷
关键词
Poisson process; Percolation; Orientation ordering; Totally ordered phase; 82B21; 60K35;
D O I
暂无
中图分类号
学科分类号
摘要
Needles at different orientations are placed in an i.i.d. manner at points of a Poisson point process on R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^2$$\end{document} of density λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}. Needles at the same direction have the same length, while needles at different directions maybe of different lengths. We study the geometry of a finite cluster when needles have only two possible orientations and when needles have only three possible orientations. In both these cases the asymptotic shape of the finite cluster as λ→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow \infty $$\end{document} is shown to consists of needles only in two directions. In the two orientations case the shape does not depend on the orientation but just on the i.i.d. structure of the orientations, while in the three orientations case the shape depend on all the parameters, i.e. the i.i.d. structure of the orientations, the lengths and the orientations of the needles. In both these cases we obtain a totally ordered phase where all except one needle are bunched together, with the exceptional needle binding them together.
引用
收藏
页码:1259 / 1275
页数:16
相关论文
共 21 条
  • [1] Alexander K(1993)Finite clusters in high-density continuous percolation: compression and sphericality Prob. Theory Rel. Fields 97 35-63
  • [2] Bricmont J(1984)The structure of Gibbs states and phase coexistence for non-symmetric continuum Widom Rowlinson models Z. Wahrscheinlichkeitstheorie 67 121-138
  • [3] Kuroda K(2011)Hard rigid rods on a Bethe-like lattice Phys. Rev. E 84 011140-175
  • [4] Lebowitz JL(2013)The nematic phase a system of long hard rods Commun. Math. Phys. 323 143-73
  • [5] Dhar D(1956)Statistical thermodynamics of semi-flexible chain molecules Proc. R. Soc. A. Math. Phys. Eng. Sci. 234 60-1266
  • [6] Rajesh R(2011)Towards understanding the ordering behavior of hard needles: analytic solutions in one dimension Phys. Rev. E. 83 061710-659
  • [7] Stilck JF(1985)On continuum percolation Ann. Prob. 13 1250-517
  • [8] Disertori M(1949)The effect of the shape of the interaction of colloidal particles Ann. N. Y. Acad. Sci. 51 627-947
  • [9] Giuliani A(1991)Percolation of Poisson sticks on the plane Prob. Theory Rel. Fields 89 503-1721
  • [10] Flory PJ(1998)Finite clusters in high density Boolean models with balls of varying sizes Adv. Appl. Prob. (SGSA) 30 929-undefined