Symmetric q-extension of λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-Apostol–Euler polynomials via umbral calculus

被引:0
作者
Hedi Elmonser
机构
[1] Majmaah University,Department of Mathematics, College of Sciences
关键词
Umbral calculus; Euler numbers and polynomials; q-theory; 05A30; 05A40; 11B68;
D O I
10.1007/s13226-022-00277-y
中图分类号
学科分类号
摘要
In this paper, we introduce a new q-generalization of the Apostol–Euler polynomials, symmetric under the interchange q⟷q-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\longleftrightarrow q^{-1}$$\end{document}, using the symmetric q-exponential function. Several properties arising from the q-umbral calculus are derived from.
引用
收藏
页码:583 / 594
页数:11
相关论文
共 1 条
[1]  
Elmonser H(2017)Symmetric q-Bernoulli numbers and polynomials Functiones et Approximatio 52 181-193