Evolution of hyperflexible joints in sticky prey capture appendages of harvestmen (Arachnida, Opiliones)

被引:0
作者
Jonas O. Wolff
Jochen Martens
Axel L. Schönhofer
Stanislav N. Gorb
机构
[1] Functional Morphology and Biomechanics,Department of Evolutionary Biology, Institute of Zoology
[2] Zoological Institute,undefined
[3] Kiel University,undefined
[4] Johannes Gutenberg University Mainz,undefined
来源
Organisms Diversity & Evolution | 2016年 / 16卷
关键词
Prey capture; Adhesion; Predator-prey interaction; Biomechanics; Torsion; Kinematics; Arachnida; Soil communities;
D O I
暂无
中图分类号
学科分类号
摘要
The rigid leg segments of arthropods are flexibly connected by joints, which usually consist of two ball-and-bowl hinges, permitting a uniaxial pivoting up to 140°. Here, we report the occurrence of hyperflexible joints (range of movements = 160–200°) in the pedipalps (second pair of appendages) of some harvestmen (Sabaconidae and Nemastomatidae), representing some of the most flexible leg joints among arthropods. Hyperflexion is achieved by a reduction of hinges and a strong constriction of the joint region. We demonstrate that hyperflexion occurs during prey capture and is used to clamp appendages of the prey, in addition to attachment by glue secreted by specialized setae. By means of high-speed video recordings, we found that in the Sabaconidae the tibiotarsal joint of the pedipalp can flex extremely rapidly (<5 ms), limiting prey escape. This is the fastest reported predatory strike in arachnids and caused both by leverage and a click mechanism. By comparative analysis of different related taxa, we retraced joint evolution and found that hyperflexion has independently evolved in Sabaconidae and Nemastomatidae, with totally different joint kinematics. We hypothesize that (rapid) hyperflexion evolved to enhance the efficiency of the pedipalp as a means of prey capture, because in springtails detachable scales limit the action of the sticky secretion of pedipalpal setae.
引用
收藏
页码:549 / 557
页数:8
相关论文
共 89 条
  • [1] Abrams PA(2000)The evolution of predator-prey interactions: theory and evidence Annual Review of Ecology and Systematics 31 79-105
  • [2] Alberti G(1973)Ernährungsbiologie und Spinnvermögen der Schnabelmilben (Bdellidae, Trombidiformes) Zeitschrift für Morphologie der Tiere 76 285-338
  • [3] Alberti G(2010)On predation in Epicriidae (Gamasida, Anactinotrichida) and fine-structural details of their forelegs Soil Organisms 82 179-192
  • [4] Ass M(1973)Die Fangbeine der Arthropoden, ihre Entstehung, Evolution und Funktion Deutsche Entomologische Zeitschrift 20 127-152
  • [5] Bauer T(1982)Prey-capture in a ground-beetle larva Animal Behaviour 30 203-208
  • [6] Bauer T(1991)Shooting springtails with a sticky rod - the flexible hunting behavior of Stenus comma (Coleoptera, Staphylinidae) and the counterstrategies of its prey Animal Behaviour 41 819-828
  • [7] Pfeiffer M(1976)Hochfrequente Filmaufnahmen als Hilfsmittel bei der Analyse von Angriffs- und Fluchtverhalten in einer Räuber-Beute-Beziehung unter Bodentieren (Collembolenfang visuell jagender Carabiden) Wissenschaftlicher Film (Wien) 17 4-11
  • [8] Bauer T(2004)The role of adhesion in prey capture and predator defence in arthropods Arthropod Structure & Development 33 3-30
  • [9] Völlenkle W(1978)Jump of Springtails Naturwissenschaften 65 495-496
  • [10] Betz O(1979)Der Sprung der Collembolen Zoologische Jahrbücher Physiologie 83 457-490