Finite Difference Schemes for the Cauchy–Navier Equations of Elasticity with Variable Coefficients

被引:0
作者
Bernard Bialecki
Andreas Karageorghis
机构
[1] Colorado School of Mines,Department of Applied Mathematics and Statistics
[2] University of Cyprus,Department of Mathematics and Statistics
来源
Journal of Scientific Computing | 2015年 / 62卷
关键词
Cauchy–Navier equations; Finite difference scheme; Matrix decomposition algorithm; Preconditioned conjugate gradient method; Fast Fourier transforms;
D O I
暂无
中图分类号
学科分类号
摘要
We solve the variable coefficient Cauchy–Navier equations of elasticity in the unit square, for Dirichlet and Dirichlet-Neumann boundary conditions, using second order finite difference schemes. The resulting linear systems are solved by the preconditioned conjugate gradient (PCG) method with preconditioners corresponding to to the Laplace operator. The multiplication of a vector by the matrices of the resulting systems and the solution of systems with the preconditioners are performed at optimal and nearly optimal costs, respectively. For the case of Dirichlet boundary conditions, we prove the second order accuracy of the scheme in the discrete H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norm, symmetry of the resulting matrix and its spectral equivalence to the preconditioner. For the case of Dirichlet–Neumann boundary conditions, we prove symmetry of the resulting matrix. Numerical tests demonstrating the convergence properties of the schemes and PCG are presented.
引用
收藏
页码:78 / 121
页数:43
相关论文
共 10 条
[1]  
Bialecki B(2011)Matrix decomposition algorithms for elliptic boundary value problems: a survey Numer. Algoritm 56 253-295
[2]  
Fairweather G(2007)Stable difference approximations for the elastic wave equation in second order formulation SIAM J. Numer. Anal. 45 1902-1936
[3]  
Karageorghis A(2010)Some simple Cartesian solutions to plane non-homogeneous elasticity problems Mech. Res. Commun. 37 22-27
[4]  
Nilsson S(2012)A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation J. Sci. Comput. 52 17-48
[5]  
Petersson NA(undefined)undefined undefined undefined undefined-undefined
[6]  
Sjögreen B(undefined)undefined undefined undefined undefined-undefined
[7]  
Kreiss H-O(undefined)undefined undefined undefined undefined-undefined
[8]  
Sadd MH(undefined)undefined undefined undefined undefined-undefined
[9]  
Sjögreen B(undefined)undefined undefined undefined undefined-undefined
[10]  
Petersson NA(undefined)undefined undefined undefined undefined-undefined