Obstructions to the extension of partial maps

被引:0
作者
S. M. Ageev
S. A. Bogatyi
机构
[1] A. S. Pushkin Brest State Pedagogical Institute,
[2] M. V. Lomonosov Moscow State University,undefined
来源
Mathematical Notes | 1997年 / 62卷
关键词
partial map; obstruction to extension; Morita filtration; selection; set-valued lower semicontinuous map; Lefschetz conditions; connected locally connected spaces; covers; homotopy; polyhedron;
D O I
暂无
中图分类号
学科分类号
摘要
One of the most important problems in topology is the minimization (in some sense) of obstructions to extending a partial map\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Z \leftarrow A\xrightarrow{f}X$$ \end{document}, i.e., of a subsetF ⊂ Z/A such thatf can be globally extended to its complement. It is shown that ifZ is a fixed metric space with dimZ ≤ n andp, q ≥−1 are fixed numbers, then obstructions to extending all partial maps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Z \leftarrow A\xrightarrow{f}X \in LC^p \cap C^4 $$ \end{document} can be concentrated in preselected fairly thin subsets ofZ.
引用
收藏
页码:675 / 682
页数:7
相关论文
共 8 条
[1]  
Eilenberg S.(1936)Un théorème de dualité Fund. Math. 26 280-282
[2]  
Borsuk K.(1937)Un théorème sur les prolongements des transformations Fund. Math. 29 161-166
[3]  
Bogatyi S. A.(1972)On metric retracts Dokl. Akad. Nauk SSSR 204 522-524
[4]  
Levshenko B. T.(1969/1970)Dimension of metric spaces, and retraction Fund. Math. 66 1-5
[5]  
Nikiforov V. A.(1987)Extension of a selection for a multivalued mapping, and the Eilenberg-Borsuk duality theorem Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 57-59
[6]  
Engelking P.(1971)Closed mapping on complete metric spaces Fund. Math. 70 103-107
[7]  
Michael E.(1956)Continuous selection. II Ann. Math. (2) 64 562-580
[8]  
Dranishnikov A. N.(1994)The Eilenberg-Borsuk theorem for maps into an arbitrary complex Mat. Sb. 184 82-90