Fixed point theorems for α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-integral type G-contraction mappings

被引:0
作者
Muhammad Usman Ali
Tayyab Kamran
Wutiphol Sintunavarat
机构
[1] National University of Sciences and Technology H-12,Department of Mathematics, School of Natural Sciences
[2] Quaid-i-Azam University,Department of Mathematics
[3] Thammasat University Rangsit Center,Department of Mathematics and Statistics, Faculty of Science and Technology
关键词
-subadmissible mappings; Graph-metric spaces ; Banach ; -contraction mappings; Integral ; -contraction mappings; -integral type ; -contraction mappings; 47H10; 54H25;
D O I
10.1007/s13370-015-0373-0
中图分类号
学科分类号
摘要
In this paper, we introduce the notion of α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-integral type G-contraction mappings to generalize the notions of Banach G-contraction and integral G-contraction mappings. We also prove some fixed point theorems for α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-integral type G-contraction mappings. By providing some example, we show that our results are real generalization of several results in literature.
引用
收藏
页码:759 / 765
页数:6
相关论文
共 27 条
[1]  
Jachymski J(2008)The contraction principle for mappings on a metric space with a graph Proc. Am. Math. Soc. 136 1359-1373
[2]  
Aleomraninejad SMA(2012)Some fixed point results on a metric space with a graph Topol. Appl. 159 659-663
[3]  
Rezapour S(2013)Some fixed point results for generalized quasi-contractive multifunctions on graphs Filomat 27 313-317
[4]  
Shahzad N(2010)Fixed point of Anna. Uni. Crai. Math. Comp. Sci. Ser. 37 85-92
[5]  
Asl JH(2012)-contraction in metric spaces endowed with a graph Nonlinear Anal. 75 3895-3901
[6]  
Mohammadi B(2013)Fixed point theorems for Reich type contractions on metric spaces with a graph Fixed Point Theory Appl. 2013 223-122
[7]  
Rezapour S(2014)Probabilistic G-contractions Fixed Point Theory Appl. 2014 142-536
[8]  
Vaezpour SM(2011)Fixed point analysis for multi-valued operators with graph approach by the generalized Hausdorff distance Georgian Math. J. 18 307327-2209
[9]  
Bojor F(2013)Fixed point theorems for single-valued and multivalued generalized contractions in metric spaces endowed with a graph Fixed Point Theory Appl. 2013 149-undefined
[10]  
Bojor F(2013)Fixed point theorems for integral J. Adv. Math. Stud. 6 115-undefined