3-color bounded patterned self-assembly

被引:0
|
作者
Lila Kari
Steffen Kopecki
Shinnosuke Seki
机构
[1] The University of Western Ontario,Department of Computer Science
[2] Aalto University,Department of Information and Computer Science, Helsinki Institute for Information Technology (HIIT)
来源
Natural Computing | 2015年 / 14卷
关键词
Conjunctive Normal Form; Boolean Formula; Tile Type; Unique Color; Shaped Seed;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of patterned self-assembly tile set synthesis (Pats) is to find a minimal tile set which uniquely self-assembles into a given pattern. Czeizler and Popa proved the NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {NP}$$\end{document}-completeness of Pats and Seki showed that the Pats problem is already NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {NP}$$\end{document}-complete for patterns with 60 colors. In search for the minimal number of colors such that Pats remains NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {NP}$$\end{document}-complete, we introduce multiple bound Pats (mbPats) where we allow bounds for the numbers of tile types of each color. We show that mbPats is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {NP}$$\end{document}-complete for patterns with just three colors and, as a byproduct of this result, we also obtain a novel proof for the NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {NP}$$\end{document}-completeness of Pats which is more concise than the previous proofs.
引用
收藏
页码:279 / 292
页数:13
相关论文
共 50 条
  • [1] 3-color bounded patterned self-assembly
    Kari, Lila
    Kopecki, Steffen
    Seki, Shinnosuke
    NATURAL COMPUTING, 2015, 14 (02) : 279 - 292
  • [2] 3-Color Bounded Patterned Self-assemblyY
    Kari, Lila
    Kopecki, Steffen
    Seki, Shinnosuke
    DNA COMPUTING AND MOLECULAR PROGRAMMING, DNA 2013, 2013, 8141 : 105 - 117
  • [3] Self-Assembly of Lithographically Patterned Nanoparticles
    Cho, Jeong-Hyun
    Gracias, David H.
    NANO LETTERS, 2009, 9 (12) : 4049 - 4052
  • [4] Self-assembly on an adaptive, patterned substrate
    Yang, Shu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [5] Patterned surfaces via self-assembly
    Cox, JK
    Eisenberg, A
    Lennox, RB
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1999, 4 (01) : 52 - 59
  • [6] Hierarchical Self-Assembly of Dopamine into Patterned Structures
    Zhang, Peibin
    Tang, Anqi
    Zhu, Baoku
    Zhu, Liping
    Zeng, Hongbo
    ADVANCED MATERIALS INTERFACES, 2017, 4 (11):
  • [7] Self-assembly of colloidal spheres on patterned substrates
    Ye, YH
    Badilescu, S
    Truong, VV
    Rochon, P
    Natansohn, A
    APPLIED PHYSICS LETTERS, 2001, 79 (06) : 872 - 874
  • [8] Origami Inspired Self-assembly of Patterned and Reconfigurable Particles
    Pandey, Shivendra
    Gultepe, Evin
    Gracias, David H.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (72):
  • [9] Hypergraph Automata: A Theoretical Model for Patterned Self-assembly
    Kari, Lila
    Kopecki, Steffen
    Simjour, Amirhossein
    UNCONVENTIONAL COMPUTATION AND NATURAL COMPUTATION, 2013, 7956 : 125 - 137