On an arithmetical triangle

被引:0
作者
Karachik V.V. [1 ]
机构
[1] South Ural State University, 76, Pr. Lenina
关键词
Unit Ball; Dirichlet Problem; Lateral Side; Recurrent Equation; Neumann Problem;
D O I
10.1007/s10958-013-1611-3
中图分类号
学科分类号
摘要
We derive and explicitly solve recurrent equations with boundary conditions for coefficients in the solvability condition for the Neumann problem for the polyharmonic equation in a unit ball. Bibliography: 9 titles. © 2013 Springer Science+Business Media New York.
引用
收藏
页码:665 / 675
页数:10
相关论文
共 9 条
[1]  
Bitsadze, V., On some properties of polyharmonic functions" [in Russian] (1988) Differents. Uravn, 24 (5), pp. 825-831
[2]  
Karachik, V., Turmetov, B., Bekaeva, A., Solvability conditions of the Neumann boundary value problem for the biharmonic equation in the unit ball (2012) Int. J. Pure Appl. Math, 81 (3), pp. 487-495
[3]  
Karachik, V.V., A problem for the polyharmonic equation in the sphere" [in Russian] (1991) Sib. Mat. Zh, 32 (5), pp. 51-58. , English transl.: Sib. Math. J. 32, No. 5, 767-774 (1991)
[4]  
Bitsadze, V., (1976) Equations of Mathematical Physics [in Russian], , Nauka, Moscow
[5]  
Bondarenko, A., (1990) Generalized Pascal Triangles and Pyramids, their Fractals, Graphs, and Applications [in Russian], , FAN, Tashkent
[6]  
Karachik, V.V., On some special polynomials (2004) Proc. Am. Math. Soc, 132 (4), pp. 1049-1058
[7]  
Bondarenko, A., Karachik, V.V., Tulyaganov, R.B., Distribution of Eulerian and Stirling numbers mod m in arithmetical triangles" [in Russian] (1996) Vopr. Vychisl. Prikl. Mat, 102, pp. 133-140
[8]  
Karachik, V.V., P-Latin matrices and Pascal's triangle modulo a prime (1996) Fibonacci Q, 34 (4), pp. 362-372
[9]  
Karachik, V.V., Antropova, N.A., On polynomial solutions to the Dirichlet problem for the biharmonic equation in a ball" [in Russian] (2012) Sib. Zh. Ind. Mat, 15 (2), pp. 86-98