A Tangential Block Lanczos Method for Model Reduction of Large-Scale First and Second Order Dynamical Systems

被引:0
作者
K. Jbilou
Y. Kaouane
机构
[1] Université du Littoral,
[2] Côte d’Opale,undefined
来源
Journal of Scientific Computing | 2019年 / 81卷
关键词
Block Lanczos; Interpolation; Model reduction; Tangential directions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new approach for model reduction of large scale first and second order dynamical systems with multiple inputs and multiple outputs. This approach is based on the projection of the initial problem onto tangential subspaces to produce a simpler reduced-order model that approximates well the behaviour of the original model. We present an algorithm named: adaptive block tangential Lanczos-type algorithm. We give some algebraic properties and present some numerical experiences to show the effectiveness of the proposed algorithms.
引用
收藏
页码:513 / 536
页数:23
相关论文
共 40 条
  • [1] Benner P(2008)Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems Numer. Linear Algebra Appl. 15 755-777
  • [2] Lasa J(2005)Model reduction of second-order system Comput. Sci. Eng. 45 149-172
  • [3] Penzl T(2006)Second-order balanced truncation Linear Algebra Appl. 415 373-384
  • [4] Chahlaoui Y(1999)Large-scale matrix computations in control Appl. Numer. Math. 30 53-63
  • [5] Gallivan KA(2003)Krylov subspace methods for large-scale matrix problems in control Futu. Gener. Comput. Syst. 19 1253-1263
  • [6] Vandendorpe A(2014)Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems SIAM. J. Matrix Anal. Appl. 35 476-498
  • [7] Van Dooren P(2011)Adaptive rational Krylov subspaces for large-scale dynamical systems Syst. Control Lett. 60 546-560
  • [8] Chahlaoui Y(1995)Stochastic dynamics of the midlatitude atmospheric jet J. Atmos. Sci. 52 1642-1656
  • [9] Lemonnier D(2008)Adaptive rational interpolation: Arnoldi and Lanczos-like equations Eur. J. Control 14 342-354
  • [10] Vandendorpe A(1984)All optimal Hankel-norm approximations of linear multivariable systems and their L, Int. J. Control 39 1115-1193