Theorems on Large Deviations for Randomly Indexed Sum of Weighted Random Variables

被引:0
|
作者
Aurelija Kasparavičiūtė
Leonas Saulis
机构
[1] Vilnius Gediminas Technical University,
来源
Acta Applicandae Mathematicae | 2011年 / 116卷
关键词
Characteristic function; Cumulant; Large deviations; Compound Poisson process; Normal approximation; Random number of summands; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a random variable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z_{t}=\sum_{i=1}^{N_{t}}a_{i}X_{i}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X, X_{1}, X_{2}, \ldots$\end{document} are independent identically distributed random variables with mean EX=μ and variance DX=σ2>0. It is assumed that Z0=0, 0≤ai<∞, and Nt, t≥0 is a non-negative integer-valued random variable independent of Xi, i=1,2,… . The paper is devoted to the analysis of accuracy of the standard normal approximation to the sum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{Z}_{t}=(\mathbf{D}Z_{t})^{-1/2}(Z_{t}-\mathbf{E}Z_{t})$\end{document}, large deviation theorems in the Cramer and power Linnik zones, and exponential inequalities for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{P}(\tilde{Z}_{t}\geq x)$\end{document}.
引用
收藏
页码:255 / 267
页数:12
相关论文
共 50 条
  • [21] Large deviations for the empirical mean of associated random variables
    Henriques, Carla
    Oliveira, Paulo Eduardo
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (06) : 594 - 598
  • [22] On Borel measurability and large deviations for fuzzy random variables
    Teran Agraz, Pedro
    FUZZY SETS AND SYSTEMS, 2006, 157 (19) : 2558 - 2568
  • [23] Large deviations for dependent heavy tailed random variables
    Yu Miao
    Tianyu Xue
    Ke Wang
    Fangfang Zhao
    Journal of the Korean Statistical Society, 2012, 41 : 235 - 245
  • [24] Strong large deviations for arbitrary sequences of random variables
    Cyrille Joutard
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 49 - 67
  • [25] Large deviations for dependent heavy tailed random variables
    Miao, Yu
    Xue, Tianyu
    Wang, Ke
    Zhao, Fangfang
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (02) : 235 - 245
  • [26] Large deviations for the largest eigenvalue of the sum of two random matrices
    Guionnet, Alice
    Maida, Mylene
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [27] LARGE DEVIATIONS AND MODERATE DEVIATIONS FOR m-NEGATIVELY ASSOCIATED RANDOM VARIABLES
    胡亦钧
    明瑞星
    杨文权
    ActaMathematicaScientia, 2007, (04) : 886 - 896
  • [28] Large deviations and moderate deviations for m-negatively associated random variables
    Hu, Yijun
    Ming, Ruixing
    Yang, Wenquan
    ACTA MATHEMATICA SCIENTIA, 2007, 27 (04) : 886 - 896
  • [29] Lyapunov exponents, shape theorems and large deviations for the random walk in random potential
    Mourrat, Jean-Christophe
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2012, 9 : 165 - 211
  • [30] Theorems of large deviations in the approximation by an infinitely divisible law
    Aleskeviciene, A
    Statulevicius, V
    ACTA APPLICANDAE MATHEMATICAE, 1999, 58 (1-3) : 61 - 73