Theorems on Large Deviations for Randomly Indexed Sum of Weighted Random Variables

被引:0
作者
Aurelija Kasparavičiūtė
Leonas Saulis
机构
[1] Vilnius Gediminas Technical University,
来源
Acta Applicandae Mathematicae | 2011年 / 116卷
关键词
Characteristic function; Cumulant; Large deviations; Compound Poisson process; Normal approximation; Random number of summands; 60F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider a random variable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z_{t}=\sum_{i=1}^{N_{t}}a_{i}X_{i}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X, X_{1}, X_{2}, \ldots$\end{document} are independent identically distributed random variables with mean EX=μ and variance DX=σ2>0. It is assumed that Z0=0, 0≤ai<∞, and Nt, t≥0 is a non-negative integer-valued random variable independent of Xi, i=1,2,… . The paper is devoted to the analysis of accuracy of the standard normal approximation to the sum \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\tilde{Z}_{t}=(\mathbf{D}Z_{t})^{-1/2}(Z_{t}-\mathbf{E}Z_{t})$\end{document}, large deviation theorems in the Cramer and power Linnik zones, and exponential inequalities for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{P}(\tilde{Z}_{t}\geq x)$\end{document}.
引用
收藏
页码:255 / 267
页数:12
相关论文
共 19 条
[1]  
Aksomaitis A.(1965)Large deviations of sums of a random number of random quantities Lith. Math. J. 2 193-197
[2]  
Aleškevičienė A.(1996)Large deviations in power zones in the approximation by Poisson law Usp. Mat. Nauk 50 63-82
[3]  
Statulevičius V.(2003)Theorems of large deviations in the approximation by compound Poisson distribution Acta Appl. Math. 78 21-34
[4]  
Aleškevičienė A.(2005)Approximation by compound Poisson distribution Theory Probab. Appl. 49 519-526
[5]  
Statulevičius V.(1998)On approximations to generalized Cox processes Probab. Math. Stat. 18 247-270
[6]  
Aleškevičienė A.(2004)On Hoeffding’s inequalities Ann. Probab. 32 1650-1673
[7]  
Statulevičius V.(1988)O tochnosti normal’noj aproksimacii dlja raspredelenij summ sluchajnovo chisla nezavisimyh sluchajnyh velichin Teor. Veroâtn. Ee Primen. 33 577-581
[8]  
Bening V.E.(1979)Large deviations of sums of independent random variables Ann. Probab. 7 745-789
[9]  
Korolev V.Yu.(1978)A general lemma of large deviations Lith. Math. J. 18 99-116
[10]  
Bentkus V.(2007)Normal approximation for sum of random number of summands Lith. Math. J. 47 531-536