Homogeneous almost quaternion-Hermitian manifolds

被引:0
作者
Andrei Moroianu
Mihaela Pilca
Uwe Semmelmann
机构
[1] Université de Versailles-St Quentin,Laboratoire de Mathématiques
[2] Universität Regensburg,Fakultät für Mathematik
[3] “Simion Stoilow” of the Romanian Academy,Institute of Mathematics
[4] Universität Stuttgart,Institut für Geometrie und Topologie, Fachbereich Mathematik
来源
Mathematische Annalen | 2013年 / 357卷
关键词
Primary 53C30; 53C35; 53C15; Secondary 17B22;
D O I
暂无
中图分类号
学科分类号
摘要
An almost quaternion-Hermitian structure on a Riemannian manifold \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M^{4n},g)$$\end{document} is a reduction of the structure group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Sp}(n)\mathrm{Sp}(1)\subset \text{ SO }(4n)$$\end{document}. In this paper we show that a compact simply connected homogeneous almost quaternion-Hermitian manifold of non-vanishing Euler characteristic is either a Wolf space, or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S }^2\times \mathbb{S }^2$$\end{document}, or the complex quadric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ SO }(7)/\mathrm{U}(3)$$\end{document}.
引用
收藏
页码:1205 / 1216
页数:11
相关论文
共 17 条
[1]  
Borel A(1949)Les sous-groupes fermés de rang maximum des groupes de Lie clos Comment. Math. Helv. 23 200-221
[2]  
de Siebenthal J(1991)The hypercomplex quotient and the quaternionic quotient Math. Ann. 290 323-340
[3]  
Joyce D(1992)Compact hypercomplex and quaternionic manifolds J. Differ. Geom. 35 743-761
[4]  
Joyce D(2010)A nearly quaternionic structure on SU(3) J. Geom. Phys. 60 791-798
[5]  
Maciá O(2004)Almost quaternion-Hermitian manifolds Ann. Global Anal. Geom. 25 277-301
[6]  
Martín Cabrera F(2004)Almost Hermitian structures and quaternionic geometries Differ. Geom. Appl. 21 199-214
[7]  
Martín Cabrera F(2008)The intrinsic torsion of almost quaternion-Hermitian manifolds Ann. Inst. Fourier. 58 1455-1497
[8]  
Swann AF(2011)Clifford structures on Riemannian manifolds Adv. Math. 228 940-967
[9]  
Martín Cabrera F(2013)Invariant four-forms and symmetric pairs Ann. Global Anal. Geom. 43 107-121
[10]  
Swann AF(1982)Quaternionic Kähler manifolds Invent. Math. 67 143-171