Edge ideals with almost maximal finite index and their powers

被引:0
作者
Mina Bigdeli
机构
[1] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Journal of Algebraic Combinatorics | 2021年 / 54卷
关键词
Edge ideal; Graph; Index; Linear resolution; Projective dimension; Regularity; Primary 13D02; 13C13; Secondary 05E40; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
A graded ideal I in K[x1,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}[x_1,\ldots ,x_n]$$\end{document}, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document} is a field, is said to have almost maximal finite index if its minimal free resolution is linear up to the homological degree pd(I)-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)-2$$\end{document}, while it is not linear at the homological degree pd(I)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)-1$$\end{document}, where pd(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)$$\end{document} denotes the projective dimension of I. In this paper, we classify the graphs whose edge ideals have this property. This in particular shows that for edge ideals the property of having almost maximal finite index does not depend on the characteristic of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}. We also compute the nonlinear Betti numbers of these ideals. Finally, we show that for the edge ideal I of a graph G with almost maximal finite index, the ideal Is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^s$$\end{document} has a linear resolution for s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 2$$\end{document} if and only if the complementary graph G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{G}$$\end{document} does not contain induced cycles of length 4.
引用
收藏
页码:947 / 978
页数:31
相关论文
共 39 条
  • [11] Trung NV(1986)First nonlinear syzygies of ideals associated to graphs Invent. Math. 83 73-90
  • [12] Dao H(1988)On the projective normality of complete linear series on an algebraic curve Compos. Math. 67 301-314
  • [13] Huneke C(2005)Some results on the syzygies of finite sets and algebraic curves J. Algebra 291 534-550
  • [14] Schweig J(2004)The depth of powers of an ideal Math. Scand. 95 23-32
  • [15] Eisenbud D(2004)Monomial ideals whose powers have a linear resolution European J. Combin. 25 949-960
  • [16] Green M(2011)Dirac’s theorem on chordal graphs and Alexander duality J. Pure Appl. Algebra 215 589-596
  • [17] Hulek K(2006)The Betti polynomials of powers of an ideal J. Combin. Theory Ser. A 113 435-454
  • [18] Popescu S(2013)Characteristic-independence of Betti numbers of graph ideals J. Algebraic Combin. 37 243-248
  • [19] Erey N(undefined)-free edge ideals undefined undefined undefined-undefined
  • [20] Erey N(undefined)undefined undefined undefined undefined-undefined