Edge ideals with almost maximal finite index and their powers

被引:0
作者
Mina Bigdeli
机构
[1] Institute for Research in Fundamental Sciences (IPM),School of Mathematics
来源
Journal of Algebraic Combinatorics | 2021年 / 54卷
关键词
Edge ideal; Graph; Index; Linear resolution; Projective dimension; Regularity; Primary 13D02; 13C13; Secondary 05E40; 05C75;
D O I
暂无
中图分类号
学科分类号
摘要
A graded ideal I in K[x1,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}[x_1,\ldots ,x_n]$$\end{document}, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document} is a field, is said to have almost maximal finite index if its minimal free resolution is linear up to the homological degree pd(I)-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)-2$$\end{document}, while it is not linear at the homological degree pd(I)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)-1$$\end{document}, where pd(I)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pd}(I)$$\end{document} denotes the projective dimension of I. In this paper, we classify the graphs whose edge ideals have this property. This in particular shows that for edge ideals the property of having almost maximal finite index does not depend on the characteristic of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {K}$$\end{document}. We also compute the nonlinear Betti numbers of these ideals. Finally, we show that for the edge ideal I of a graph G with almost maximal finite index, the ideal Is\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I^s$$\end{document} has a linear resolution for s≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 2$$\end{document} if and only if the complementary graph G¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{G}$$\end{document} does not contain induced cycles of length 4.
引用
收藏
页码:947 / 978
页数:31
相关论文
共 39 条
  • [1] Banerjee A(2015)The regularity of powers of edge ideals J. Algebraic Combin. 41 303-321
  • [2] Bigdeli M(2018)On the index of powers of edge ideals Comm. Algebra 46 1080-1095
  • [3] Herzog J(2011)Koszul homology and syzygies of Veronese subalgebras Math. Ann. 351 761-779
  • [4] Zaare-Nahandi R(1997)Regularity of the powers of an ideal Comm. Algebra 25 3773-3776
  • [5] Bruns W(1999)Asymptotic behaviour of the Castelnuovo–Mumford regularity Compos. Math. 118 243-261
  • [6] Conca A(2013)Bounds on the regularity and projective dimension of ideals associated to graphs J. Algebraic Combin. 38 37-55
  • [7] Römer T(2005)Restricting linear syzygies: algebra and geometry Compos. Math. 141 1460-1478
  • [8] Chandler KA(2018)Powers of edge ideals with linear resolutions Comm. Algebra 46 4007-4020
  • [9] Cutkosky SD(2019)Powers of ideals associated to J. Pure Appl. Algebra 223 3071-3080
  • [10] Herzog J(2009)-free graphs Comm. Algebra 37 1921-1933