Analytic Invariant Curves for an Iterative Equation Related to Ricker-type Second-order Equation

被引:0
|
作者
Hou Yu Zhao
Michal Fečkan
机构
[1] Chongqing Normal University,School of Mathematics
[2] Comenius University in Bratislava,Department of Mathematical Analysis and Numerical Mathematics
[3] Mathematical Institute of Slovak Academy of Sciences,undefined
来源
Acta Mathematica Sinica, English Series | 2021年 / 37卷
关键词
Difference equation; invariant curves; analytic solution; small divisor; 39A10; 39B12; 34A25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the existence of analytic invariant curves of an iterative equation f(f(x))=xea−x−f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(f(x)) = x{{\rm{e}}^{a - x - f(x)}}$$\end{document} which arises from Ricker-type second-order equation. By reducing the equation with the Schröder transformation to an auxiliary equation, the author discusses not only that the parameter at resonance, i.e., at a root of the unity, but also the parameter near resonance under the Brjuno condition.
引用
收藏
页码:1041 / 1052
页数:11
相关论文
共 50 条