Mixing Shifts of Finite Type with Non-Elementary Surjective Dimension Representations

被引:0
作者
Nicholas Long
机构
[1] Stephen F. Austin State University,Department of Mathematics and Statistics
来源
Acta Applicandae Mathematicae | 2013年 / 126卷
关键词
Shift of finite type; Dimension representation; 37B10;
D O I
暂无
中图分类号
学科分类号
摘要
The dimension representation has been a useful tool in studying the mysterious automorphism group of a shift of finite type, the classification of shifts of finite type, and surrounding problems. We discuss the importance of understanding the image of the dimension representation and discuss the candidate range for the fundamental case of mixing shifts of finite type. We present the first class of examples of mixing shifts of finite type for which the dimension representation is surjective necessarily using non-elementary conjugacies.
引用
收藏
页码:277 / 295
页数:18
相关论文
共 24 条
  • [1] Boyle M.(1988)The automorphism group of a shift of finite type Trans. Am. Math. Soc. 306 71-114
  • [2] Lind D.(1979)Some results on the decidability of shift equivalence J. Comb. Inf. Syst. Sci. 4 123-146
  • [3] Rudolph D.(1992)Williams’ conjecture is false for reducible subshifts J. Am. Math. Soc. 5 213-215
  • [4] Kim K.H.(1993)Topological classification of reducible subshifts Pure Math. Appl., Ser. B 3 87-102
  • [5] Roush F.W.(1999)The Williams conjecture is false for irreducible subshifts Ann. Math. (2) 149 545-558
  • [6] Kim K.H.(1992)Automorphisms of the dimension group and gyration numbers J. Am. Math. Soc. 5 191-212
  • [7] Roush F.W.(2000)Characterization of inert actions on periodic points I Forum Math. 12 565-602
  • [8] Kim K.H.(2000)Characterization of inert actions on periodic points II Forum Math. 12 671-712
  • [9] Roush F.W.(1980)On dimension functions and topological Markov chains Invent. Math. 56 239-250
  • [10] Kim K.H.(1991)Notes on coding problems for finite state processes Bull. Lond. Math. Soc. 23 1-33