A new family of amicable hadamard matrices

被引:0
作者
Seberry J. [1 ]
机构
[1] Centre for Computer and Information Security Research, SCSSE, University of Wollongong, Wollongong
关键词
Amicable Hadamard cores; Amicable Hadamard matrices; Hadamard matrices;
D O I
10.1080/15598608.2013.781469
中图分类号
学科分类号
摘要
We study constructions for amicable Hadamard matrices. The family for orders, t a positive integer, is explicitly exhibited. We also show that there are amicable Hadamard matrices of order for any odd integer. Now we have orders,., an odd integer, for the first time. © 2013 Copyright Grace Scientific Publishing, LLC.
引用
收藏
页码:650 / 657
页数:7
相关论文
共 17 条
  • [1] Adams S.S., A journey of discovery: Orthogonalmatrices and communications, AMS Contemp. Math. Ser., 479, pp. 1-9, (2009)
  • [2] Belevitch V., Conference networks and Hadamard matrices, Ann. Soc. Sci. Brux., T82, pp. 13-32, (1968)
  • [3] Belevitch V., Theory of 2 N-terminal networks with applications to conference telephony, Electr. Commun., 27, 3, pp. 231-244, (1950)
  • [4] Delsarte P., Goethals J.M., Seidel J.J., Orthogonal matrices with zero diagonal, Can. J. Math., 23, pp. 816-832, (1971)
  • [5] Djokovic D., Skew Hadamard matrices of order 4 37 and 4 43, J. Combin. Theory Ser. A, 61, 2, pp. 319-321, (1992)
  • [6] Djokovic D., Skew-Hadamard matrices of orders 188 and 388 exist, Int. Math. Forum, 3, 21-24, pp. 1063-1068, (2008)
  • [7] Djokovic D., Skew-Hadamard matrices of orders 436, and 988 exist, J. Combin. Des., 16, 6, pp. 493-498, (2008)
  • [8] Fletcher R.J., Koukouvinos, Seberry J., New skew-Hadamard matrices of order 2.59 and new D-optimal designs of order 2.59, Discrete Math., 286, 3, pp. 251-253, (2004)
  • [9] Geramita A.V., Pullman N.J., Seberry Wallis J., Families of weighing matrices, Bull. Aust. Math. Soc., 10, pp. 119-122, (1974)
  • [10] Geramita A.V., Seberry J., Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Lecture Notes in Pure and Applied Mathematics, (1979)