Mapping class groups of trigonal loci

被引:0
作者
Michele Bolognesi
Michael Lönne
机构
[1] Université de Rennes 1,
[2] Mathematisches Institut - Lehrstuhl Mathematik VIII,undefined
来源
Selecta Mathematica | 2016年 / 22卷
关键词
Moduli stacks of curves; Teichmüller spaces; Trigonal curves; Mapping class groups; Hurwitz spaces; Monodromy maps; Braid groups; Orbifold fundamental group; Primary 14H10; 32G15; Secondary 14H30; 14D23;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the topology of the stack Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_g$$\end{document} of smooth trigonal curves of genus g over the complex field. We make use of a construction by the first named author and Vistoli, which describes Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_g$$\end{document} as a quotient stack of the complement of the discriminant. This allows us to use techniques developed by the second named author to give presentations of the orbifold fundamental group of Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {T}_g$$\end{document}, and of its substrata with prescribed Maroni invariant, and describe their relation with the mapping class group Mapg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}ap_g$$\end{document} of Riemann surfaces of genus g.
引用
收藏
页码:417 / 445
页数:28
相关论文
共 28 条
[1]  
Arsie A(2004)Stacks of cyclic covers of projective spaces Compos. Math. 140 647-666
[2]  
Vistoli A(2012)Stacks of trigonal curves Trans. Am. Math. Soc. 364 3365-3393
[3]  
Bolognesi M(1986)Orbits under symplectic transvections. II. The case Proc. Lond. Math. Soc. 52 532-556
[4]  
Vistoli A(2011)On the branch curve of a general projection of a surface to a plane Trans. Am. Math. Soc. 363 3457-3471
[5]  
Brown R(1981)Quadratische Formen und Monodromiegruppen von Singularitäten Math. Ann. 255 463-498
[6]  
Humphries SP(1998)Equivariant intersection theory Invent. Math. 131 595-634
[7]  
Ciliberto C(2011)The Chow ring of the stack of cyclic covers of the projective line Ann. Inst. Fourier 61 2249-2275
[8]  
Flamini F(1974)The intersection matrix of Brieskorn singularities Invent. Math. 25 143-157
[9]  
Ebeling W(1976)Threefold branched coverings of Am. J. Math. 98 989-997
[10]  
Edidin D(1983)Skew-symmetric vanishing lattices and their monodromy groups Math. Ann. 266 115-133