Wave-breaking phenomena for a weakly dissipative shallow water equation

被引:0
|
作者
Min Zhu
Ying Wang
机构
[1] Nanjing Forestry University,Department of Mathematics
[2] University of Electronic Science and Technology of China,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2020年 / 71卷
关键词
A weakly dissipative shallow water; Blow up; Wave breaking; 35B44; 35G25;
D O I
暂无
中图分类号
学科分类号
摘要
Consideration in the present paper is a weakly dissipative shallow water equation. The parameters take different values, which include several different important shallow water equations, such as CH equation, DP equation, Novikov equation and so on. The wave-breaking phenomena are investigated by three different kinds of method. Due to the presence of high-order nonlinear terms u2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^{2n+1}$$\end{document} and u2muxx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u^{2m}u_{xx}$$\end{document}, the equation loses the conservation law E=∫S(u2+ux2)dx.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E=\int _{{\mathbb {S}}} (u^2+u^2_x)\mathrm{d}x.$$\end{document} This difficulty has been dealt with by establishing the energy inequality.
引用
收藏
相关论文
共 50 条
  • [1] Wave-breaking phenomena for a weakly dissipative shallow water equation
    Zhu, Min
    Wang, Ying
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (03):
  • [2] Wave-breaking phenomena and persistence property for a weakly dissipative shallow water equation
    Liu, Xijun
    Wang, Ying
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (01): : 167 - 202
  • [3] Wave-breaking phenomena and persistence property for a weakly dissipative shallow water equation
    Xijun Liu
    Ying Wang
    Monatshefte für Mathematik, 2022, 199 : 167 - 202
  • [4] Wave-breaking phenomena for a new weakly dissipative quasilinear shallow-water waves equation
    Dong, Xiaofang
    Su, Xianxian
    Wang, Kai
    MONATSHEFTE FUR MATHEMATIK, 2024, 205 (02): : 235 - 266
  • [5] Wave-breaking phenomena and global existence for the weakly dissipative generalized Novikov equation
    Ji, Shuguan
    Zhou, Yonghui
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2256):
  • [6] Wave-breaking phenomena and Gevrey regularity for the weakly dissipative generalized Camassa–Holm equation
    Zhenyu Wan
    Ying Wang
    Min Zhu
    Monatshefte für Mathematik, 2024, 204 : 357 - 387
  • [7] Wave-breaking phenomena and Gevrey regularity for the weakly dissipative generalized Camassa-Holm equation
    Wan, Zhenyu
    Wang, Ying
    Zhu, Min
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (02): : 357 - 387
  • [8] Wave-breaking phenomena and persistence properties for a nonlinear dissipative Camassa-Holm equation
    Fu, Shanshan
    Wang, Ying
    APPLICABLE ANALYSIS, 2023, 102 (17) : 4805 - 4827
  • [9] On wave-breaking phenomena for a new generalized two-component shallow water wave system
    Dong, Xiaofang
    MONATSHEFTE FUR MATHEMATIK, 2021, 195 (01): : 35 - 53
  • [10] On wave-breaking phenomena for a new generalized two-component shallow water wave system
    Xiaofang Dong
    Monatshefte für Mathematik, 2021, 195 : 35 - 53