Lie Algebras with Nilpotent Length Greater than that of each of their Subalgebras

被引:0
作者
David A. Towers
机构
[1] Lancaster University,Department of Mathematics and Statistics
来源
Algebras and Representation Theory | 2017年 / 20卷
关键词
Lie algebras; Solvable; Nilpotent series; Nilpotent length; Chief factor; Extreme; Nilregular; Characteristic ideal; -algebra; 17B05; 17B20; 17B30; 17B50;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to study the finite-dimensional solvable Lie algebras described in its title, which we call minimal non-N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal N}$\end{document}. To facilitate this we investigate solvable Lie algebras of nilpotent length k, and of nilpotent length ≤k, and extreme Lie algebras, which have the property that their nilpotent length is equal to the number of conjugacy classes of maximal subalgebras. We characterise the minimal non-N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal N}$\end{document} Lie algebras in which every nilpotent subalgebra is abelian, and those of solvability index ≤3.
引用
收藏
页码:735 / 750
页数:15
相关论文
共 17 条
[1]  
Barnes DW(1967)On the cohomology of soluble Lie algebras Math. Zeit. 101 343-49
[2]  
Barnes DW(1968)On the theory of soluble Lie algebras Math. Z. 106 343-354
[3]  
Gastineau-Hills HM(1996)On almost Nilpotent-by-Abelian Lie Algebras Lin. Alg. Appl. 247 159-167
[4]  
Bowman K(1968)Extreme classes of finite soluble groups J. Algebra 9 285-313
[5]  
Towers DA(1973)The nilpotent length of finite soluble groups J. Austral. Math. Soc. 16 357—362-82
[6]  
Carter R(2009)On action of outer derivations on nilpotent ideals of Lie algebras Algebra Discrete Math. 1 74-164
[7]  
Fischer B(1957)Characteristic ideals and the structure of Lie algebras Proc. Amer. Math. Soc. 8 159-462
[8]  
Hawkes T(1973)A Frattini theory for algebras Proc. London Math. Soc. (3) 27 440-73
[9]  
Frick M(1980)Lie algebras all of whose proper subalgebras are nilpotent Lin Alg. Appl. 32 61-12
[10]  
Maksimenko DV(2011)Solvable Lie A-algebras J. Algebra 340 1-493