A fractional order model for obesity epidemic in a non-constant population

被引:0
|
作者
Elif Demirci
机构
[1] Ankara University,Department of Mathematics, Faculty of Sciences
来源
Advances in Difference Equations | / 2017卷
关键词
fractional differential equations; epidemic model; stability analysis; obesity; 34A08; 92B99; 34D20; 37N25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a fractional order epidemic model for obesity contagion. The population size is assumed to be nonconstant, which is more realistic. The model considers vertical transmission of obesity and also obesity-related death rate. We give local stability analysis of the model. Finally, some numerical examples are presented.
引用
收藏
相关论文
共 50 条
  • [41] Non-constant discounting in continuous time
    Karp, Larry
    JOURNAL OF ECONOMIC THEORY, 2007, 132 (01) : 557 - 568
  • [42] HARMONIC HOLES FOR NON-CONSTANT FIELDS
    DURELLI, AJ
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1980, 47 (02): : 455 - 457
  • [43] BBM equation with non-constant coefficients
    Senthilkumar, Amutha
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (04) : 652 - 664
  • [44] EXTENDING ZECKENDORF'S THEOREM TO A NON-CONSTANT RECURRENCE AND THE ZECKENDORF GAME ON THIS NON-CONSTANT RECURRENCE RELATION
    Boldyriew, Elzbieta
    Cusenza, Anna
    Dai, Linglong
    Ding, Pei
    Dunkelberg, Aidan
    Haviland, John
    Huffman, Kate
    Ke, Dianhui
    Kleber, Daniel
    Kuretski, Jason
    Lentfer, John
    Luo, Tianhao
    Miller, Steven J.
    Mizgerd, Clayton
    Tiwari, Vashisth
    Ye, Jingkai
    Zhang, Yunhao
    Zheng, Xiaoyan
    Zhu, Weiduo
    FIBONACCI QUARTERLY, 2020, 58 (05): : 55 - 76
  • [45] On second-order linear Stieltjes differential equations with non-constant coefficients
    Fernandez, Francisco J.
    Albes, Ignacio Marquez
    Tojo, Fernandez
    OPEN MATHEMATICS, 2024, 22 (01):
  • [46] Global stability of a fractional order SIS epidemic model
    Wu, Zhaohua
    Cai, Yongli
    Wang, Zhiming
    Wang, Weiming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 352 : 221 - 248
  • [47] Optimal control of a fractional order epidemic model with carriers
    Das, Meghadri
    Samanta, G. P.
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2022, 10 (02) : 598 - 619
  • [48] A statistical estimation of fractional order cryptosporidiosis epidemic model
    Nauman Ahmed
    Wissal Audah Alhilfi
    Hanan A. Z. AlMansury
    Maysaa E. A. Elwahab
    Muhammad Tahir
    Ohud A. Alqasem
    Zafar Iqbal
    Ali Raza
    Baboucarr Ceesay
    Muhammad Rafiq
    Ilyas Khan
    Scientific Reports, 15 (1)
  • [49] A fractional order epidemic model for the simulation of outbreaks of Ebola
    Pan, Weiqiu
    Li, Tianzeng
    Ali, Safdar
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [50] Fractional-Order Epidemic Model for Measles Infection
    Akuka, Philip N. A.
    Seidu, Baba
    Okyere, Eric
    Abagna, Stephen
    SCIENTIFICA, 2024, 2024