A fractional order model for obesity epidemic in a non-constant population

被引:0
|
作者
Elif Demirci
机构
[1] Ankara University,Department of Mathematics, Faculty of Sciences
来源
Advances in Difference Equations | / 2017卷
关键词
fractional differential equations; epidemic model; stability analysis; obesity; 34A08; 92B99; 34D20; 37N25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a fractional order epidemic model for obesity contagion. The population size is assumed to be nonconstant, which is more realistic. The model considers vertical transmission of obesity and also obesity-related death rate. We give local stability analysis of the model. Finally, some numerical examples are presented.
引用
收藏
相关论文
共 50 条
  • [21] Analysis of a Solute Transport Model with Non-constant Dispersion
    Ntsime, Basetsana P.
    Moitsheki, Raseelo J.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [22] Non-constant rates and over-dinusive prices in a simple model of limit order markets
    Challet, D
    Stinchcombe, R
    QUANTITATIVE FINANCE, 2003, 3 (03) : 155 - 162
  • [23] On Model Evaluation Under Non-constant Class Imbalance
    Brabec, Jan
    Komarek, Tomas
    Franc, Vojtech
    Machlica, Lukas
    COMPUTATIONAL SCIENCE - ICCS 2020, PT IV, 2020, 12140 : 74 - 87
  • [24] The study of non-constant steady states and pattern formation for an interacting population model in a spatial environment
    Gupta, R. P.
    Tiwari, Shristi
    Kumar, Arun
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 229 : 652 - 672
  • [25] Inference of genetic forces using a Poisson random field model with non-constant population size
    Amei, Amei
    Xu, Jianbo
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 203 : 57 - 69
  • [26] On the solution of fractional order SIS epidemic model
    Hassouna, M.
    Ouhadan, A.
    El Kinani, E. H.
    CHAOS SOLITONS & FRACTALS, 2018, 117 : 168 - 174
  • [27] 2ND-ORDER MODELING IN NON-CONSTANT DENSITY FLOWS
    JANICKA, J
    LUMLEY, JL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (09): : 1103 - 1103
  • [28] Stabilization and Stability Robustness of Coupled Non-Constant Parameter Time Fractional PDEs
    Chen, Juan
    Tepljakov, Aleksei
    Petlenkov, Eduard
    Chen, Yangquan
    Zhuang, Bo
    IEEE ACCESS, 2019, 7 : 163969 - 163980
  • [29] Soliton with non-constant velocity
    Zenchuk, AI
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (1-2) : 191 - 201
  • [30] ON LOCALLY NON-CONSTANT MAPPINGS
    OMILJANOWSKI, K
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4A (01): : 119 - 122