A fractional order model for obesity epidemic in a non-constant population

被引:0
|
作者
Elif Demirci
机构
[1] Ankara University,Department of Mathematics, Faculty of Sciences
来源
Advances in Difference Equations | / 2017卷
关键词
fractional differential equations; epidemic model; stability analysis; obesity; 34A08; 92B99; 34D20; 37N25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a fractional order epidemic model for obesity contagion. The population size is assumed to be nonconstant, which is more realistic. The model considers vertical transmission of obesity and also obesity-related death rate. We give local stability analysis of the model. Finally, some numerical examples are presented.
引用
收藏
相关论文
共 50 条
  • [1] A fractional order model for obesity epidemic in a non-constant population
    Demirci, Elif
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] Ramsey model with non-constant population growth
    Kajanovicova, Viktoria
    Novotny, Branislav
    Pospisil, Michal
    MATHEMATICAL SOCIAL SCIENCES, 2020, 104 : 40 - 46
  • [3] Selkov's Dynamic System of Fractional Variable Order with Non-Constant Coefficients
    Parovik, Roman
    MATHEMATICS, 2025, 13 (03)
  • [4] Non-constant Positive Steady States of the Epidemic Model with Non-monotonic Incidence Rate
    Shu-ling ZHA
    Bing-fang LI
    Xiu-xiang YANG
    Gai-zhu QU
    Acta Mathematicae Applicatae Sinica, 2015, 31 (03) : 783 - 798
  • [5] High-order reliable numerical methods for epidemic models with non-constant recruitment rate
    Takacs, Balint Mate
    Sebestyen, Gabriella Svantnerne
    Farago, Istvan
    APPLIED NUMERICAL MATHEMATICS, 2024, 206 : 75 - 93
  • [6] Non-constant positive steady states of the epidemic model with non-monotonic incidence rate
    Shu-ling Zha
    Bing-fang Li
    Xiu-xiang Yang
    Gai-zhu Qu
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 783 - 798
  • [7] Non-constant Positive Steady States of the Epidemic Model with Non-monotonic Incidence Rate
    Zha, Shu-ling
    Li, Bing-fang
    Yang, Xiu-xiang
    Qu, Gai-zhu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (03): : 783 - 798
  • [8] A first order phase transition with non-constant density
    Bonetti, Elena
    Fabrizio, Mauro
    Fremond, Michel
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) : 561 - 577
  • [9] NON-CONSTANT ORDER PARAMETER AND VACUUM-EVOLUTION
    DELGIUDICE, E
    MANKA, R
    MILANI, M
    VITIELLO, G
    PHYSICS LETTERS B, 1988, 206 (04) : 661 - 664
  • [10] On the nonexistence of non-constant exact periodic solutions in a class of the Caputo fractional-order dynamical systems
    Kang, Yan-Mei
    Xie, Yong
    Lu, Jin-Cheng
    Jiang, Jun
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1259 - 1267