Effect of the inoculation of plant growth-promoting rhizobacteria on the photosynthetic characteristics of Sambucus williamsii Hance container seedlings under drought stress

被引:0
|
作者
Fangchun Liu
Hailin Ma
Lin Peng
Zhenyu Du
Bingyao Ma
Xinghong Liu
机构
[1] Shandong Academy of Forestry,Institute of Resource and Environment
[2] Shandong Engineering Research Center for Ecological Restoration of Forest Vegetation,undefined
来源
AMB Express | / 9卷
关键词
Plant growth-promoting rhizobacteria; Photosynthetic; Drought stress; Hance;
D O I
暂无
中图分类号
学科分类号
摘要
Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that survive within the range of plant rhizosphere and can promote plant growth. The effects of PGPR in promoting plant growth, activating soil nutrients, reducing fertilizer application, and improving the resistance of plant inducible system have been widely investigated. However, few studies have investigated PGPR as elicitors of tolerance to abiotic stresses, especially drought stress. In this study, the effects of Acinetobacter calcoaceticus X128 on the photosynthetic rate (Pn), stomatal conductance (Gs), intracellular CO2 concentration (Ci), and total chlorophyll content [Chl(a+b)] of Sambucus williamsii Hance seedling leaves under moderate drought stress and drought-rewatering conditions were determined. Compared with those of uninoculated seedlings, the average Pn values during the entire drought stress of inoculated seedlings increased by 12.99%. As the drought duration was lengthened, Ci of uninoculated leaves continued to increase after rapidly declining, whereas Gs continuously decreased. Furthermore, their photosynthetic properties were simultaneously restricted by stomatal and non-stomatal factors. After X128 inoculation, Ci and Gs of S. williamsii Hance leaves continued to decrease, and their photosynthetic properties were mainly restricted by stomatal factors. At the end of the drought stress, water stress reduced [Chl(a + b)] of S. williamsii Hance leaves by 13.49%. However, X128 inoculation decreased this deficit to only 7.39%. After water supply was recovered, Pn, Gs, and [Chl(a+b)] in uninoculated leaves were reduced by 14.23%, 12.02%, and 5.86%, respectively, relative to those under well-watered conditions. However, Ci increased by 6.48%. Compared with those of uninoculated seedlings, Pn, Gs, and [Chl(a+b)] in X128-inoculated seedlings were increased by 9.83%, 9.30%, and 6.85%, respectively. Therefore, the inoculation of X128 under arid environments can mitigate the reduction of chlorophyll, delay the restriction caused by non-stomatal factors to Pn in plant leaves under water stress, and can be more conducive to the recovery of photosynthetic functions of leaves after water supply is recovered.
引用
收藏
相关论文
共 50 条
  • [31] Synergistic use of biochar and the plant growth-promoting rhizobacteria in mitigating drought stress on oak (Quercus brantii Lindl.) seedlings
    Heydari, Mehdi
    Hajinia, Somayeh
    Jafarian, Nahid
    Karamian, Mahnaz
    Mosa, Zeinab
    Asgharzadeh, Shokoufeh
    Rezaei, Nasrin
    Guidi, Lucia
    Valko, Orsolya
    Prevosto, Bernard
    FOREST ECOLOGY AND MANAGEMENT, 2023, 531
  • [32] Effects of plant growth-promoting rhizobacteria on loblolly and slash pine seedlings
    Enebak, SA
    Wei, G
    Kloepper, JW
    FOREST SCIENCE, 1998, 44 (01) : 139 - 144
  • [33] Melon growth-promoting rhizobacteria under saline stress
    Seido, Sirando Lima
    de Sousa, Leandro Pio
    da Silva, Marcio Jose
    Donzeli, Vanessa Polon
    Pinto de Queiroz, Sergio Oliveira
    REVISTA BRASILEIRA DE CIENCIAS AGRARIAS-AGRARIA, 2019, 14 (01):
  • [34] Alleviation of Submergence Stress in Rice Seedlings by Plant Growth-Promoting Rhizobacteria With ACC Deaminase Activity
    Bal, Himadri Bhusan
    Adhya, Tapan Kumar
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2021, 5
  • [35] Amelioration of Drought Stress Adverse Effect and Mediating Biochemical Content of Cabbage Seedlings by Plant Growth Promoting Rhizobacteria
    Samancioglu, Aysel
    Yildirim, Ertan
    Turan, Metin
    Kotan, Recep
    Sahin, Ustun
    Kul, Raziye
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2016, 18 (05) : 948 - 956
  • [36] Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis
    Tsukanova, K. A.
    Chebotar, V. K.
    Meyer, J. J. M.
    Bibikova, T. N.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2017, 113 : 91 - 102
  • [37] Plant growth-promoting rhizobacteria improve drought tolerance of crops: a review
    Liu, Kewei
    Deng, Fenglin
    Zeng, Fanrong
    Chen, Zhong-Hua
    Qin, Yuan
    Chen, Guang
    PLANT GROWTH REGULATION, 2025,
  • [38] Amelioration of drought tolerance in wheat by the interaction of plant growth-promoting rhizobacteria
    Gontia-Mishra, I.
    Sapre, S.
    Sharma, A.
    Tiwari, S.
    PLANT BIOLOGY, 2016, 18 (06) : 992 - 1000
  • [39] PLANT GROWTH PROMOTING RHIZOBACTERIA IN COMBINATION WITH PLANT GROWTH REGULATORS ATTENUATE THE EFFECT OF DROUGHT STRESS
    Bashir, Tasmia
    Naz, Shumaila
    Bano, Asghari
    PAKISTAN JOURNAL OF BOTANY, 2020, 52 (03) : 783 - 792
  • [40] Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize
    Naseem, Hafsa
    Bano, Asghari
    JOURNAL OF PLANT INTERACTIONS, 2014, 9 (01) : 689 - 701