Harnack estimates for geometric flows, applications to Ricci flow coupled with harmonic map flow

被引:0
作者
Hongxin Guo
Tongtong He
机构
[1] Wenzhou University,School of Mathematics and Information Science
[2] Mathematics Research Unit,undefined
来源
Geometriae Dedicata | 2014年 / 169卷
关键词
Ricci flow; Conjugate heat equation; Harnack estimate; Primary 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
We derive Harnack estimates for heat and conjugate heat equations in abstract geometric flows. The main results lead to new Harnack inequalities for a variety of geometric flows. In particular, Harnack inequalities for the Ricci flow coupled with Harmonic map flow are obtained.
引用
收藏
页码:411 / 418
页数:7
相关论文
共 10 条
[1]  
Cao X(2008)Differential Harnack estimates for backward heat equations with potentials under the Ricci flow J. Funct. Anal. 255 1024-1038
[2]  
Cao X(2009)Differential Harnack estimates for time-dependent heat equations with potentials Geom. Funct. Anal. 19 989-1000
[3]  
Hamilton RS(1993)The Harnack estimate for the Ricci flow J. Differ. Geom. 37 225-243
[4]  
Hamilton RS(2008)A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow J. Funct. Anal. 255 1008-1023
[5]  
Kuang S(2008)Evolution of an extended Ricci flow system Comm. Anal. Geom. 16 1007-1048
[6]  
Zhang QS(2010)Monotone volume formulas for geometric flows J. Reine Angew. Math. 643 39-57
[7]  
List B(2012)Ricci flow coupled with harmonic map flow Ann. Sci. Ec. Norm. Super. 45 101-142
[8]  
Müller R(2013)Differential Harnack inequalities for backward heat equation with potential under the Harmonic-Ricci flow J. Math. Anal. Appl. 406 502-510
[9]  
Müller R.(undefined)undefined undefined undefined undefined-undefined
[10]  
Zhu A.(undefined)undefined undefined undefined undefined-undefined