Chiral perturbation theory of the hyperfine splitting in (muonic) hydrogen

被引:0
作者
Franziska Hagelstein
Vadim Lensky
Vladimir Pascalutsa
机构
[1] Johannes Gutenberg Universität Mainz,Institute of Nuclear Physics
[2] Johannes Gutenberg Universität Mainz,PRISMA+ Cluster of Excellence
[3] Paul Scherrer Institute,Laboratory for Particle Physics
来源
The European Physical Journal C | / 83卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The ongoing experimental efforts to measure the hyperfine transition in muonic hydrogen prompt an accurate evaluation of the proton-structure effects. At the leading order in α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, which is O(α5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\alpha ^5)$$\end{document} in the hyperfine splitting (hfs), these effects are usually evaluated in a data-driven fashion, using the empirical information on the proton electromagnetic form factors and spin structure functions. Here we perform a first calculation based on the baryon chiral perturbation theory (Bχ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT). At leading orders it provides a prediction for the proton polarizability effects in hydrogen (H) and muonic hydrogen (μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}H). We find large cancellations among the various contributions leading to, within the uncertainties, a zero polarizability effect at leading order in the Bχ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document}PT expansion. This result is in significant disagreement with the current data-driven evaluations. The small polarizability effect implies a smaller Zemach radius RZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\textrm{Z}$$\end{document}, if one uses the well-known experimental 1S hfs in H or the 2S hfs in μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}H. We, respectively, obtain RZ(H)=1.010(9)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\textrm{Z}(\textrm{H}) = 1.010(9)$$\end{document} fm, RZ(μH)=1.040(33)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_\textrm{Z}(\mu \textrm{H}) = 1.040(33)$$\end{document} fm. The total proton-structure effect to the hfs at O(α5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\alpha ^5)$$\end{document} is then consistent with previous evaluations; the discrepancy in the polarizability is compensated by the smaller Zemach radius. Our recommended value for the 1S hfs in μH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \text {H}$$\end{document} is 182.640(18)meV.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$182.640(18)\,\textrm{meV}.$$\end{document}
引用
收藏
相关论文
共 119 条
[1]  
Pohl R(2010)The size of the proton Nature 466 213-216
[2]  
Krauth JJ(2021)Measuring the Nature 589 527-531
[3]  
Antognini A(2013)-particle charge radius with muonic helium-4 ions Science 339 417-420
[4]  
Nez F(2013)Proton structure from the measurement of Ann. Phys. 331 127-145
[5]  
Schuhmann K(2011) transition frequencies of muonic hydrogen Phys. Rev. A 83 042509-418
[6]  
Amaro FD(2020)Theory of the Eur. Phys. J. A 56 185-116
[7]  
Antognini A (2022) Lamb shift and Annu. Rev. Nucl. Part. Sci. 72 389-2309
[8]  
Kottmann F(2008) hyperfine splitting in muonic hydrogen Phys. Rev. A 78 022517-348
[9]  
Biraben F(2006)Proton structure corrections to hyperfine splitting in muonic hydrogen Proc. SPIE Int. Soc. Opt. Eng. 6165 0M-2100
[10]  
Indelicato P(2019)The FAMU experiment: muonic hydrogen high precision spectroscopy studies Eur. Phys. J. A 55 64-97