Nonlinear Boundary Conditions in Kirchhoff-Love Plate Theory

被引:0
|
作者
Oana Iosifescu
Christian Licht
Gérard Michaille
机构
[1] Université Montpellier 2 et CUFR de Nîmes,ACSIOM and AVA, UMR
[2] Université Montpellier II,CNRS 5149
来源
Journal of Elasticity | 2009年 / 96卷
关键词
Kirchhoff-Love plate theory; Nonlinear boundary conditions; Variational convergence; Trotter theory; 74B05; 74B20; 74K20; 35B40; 74M10;
D O I
暂无
中图分类号
学科分类号
摘要
Most of the derivations of the mechanical behavior of a plate as the limit behavior of a three-dimensional solid whose thickness tends to zero deal with stationary homogeneous linear boundary conditions on the lateral boundary. Here, in the framework of small strains, we rigorously determine a large class of steady-state or transient nonlinear boundary conditions which provide asymptotic kinematics of Kirchhoff-Love type.
引用
收藏
页码:57 / 79
页数:22
相关论文
共 50 条
  • [1] Nonlinear Boundary Conditions in Kirchhoff-Love Plate Theory
    Iosifescu, Oana
    Licht, Christian
    Michaille, Gerard
    JOURNAL OF ELASTICITY, 2009, 96 (01) : 57 - 79
  • [2] Nonlinear boundary conditions in Kirchhoff-Love plate theory
    Licht, C
    Iosifescu, O
    Michaille, G
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2002, : 459 - 462
  • [3] On the boundary conditions of the geometrically nonlinear Kirchhoff-Love shell theory
    Ivannikov, V.
    Tiago, C.
    Pimenta, P. M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (18) : 3101 - 3112
  • [4] DOUBLING INEQUALITY AT THE BOUNDARY FOR THE KIRCHHOFF-LOVE PLATE'S EQUATION WITH DIRICHLET CONDITIONS
    Morassi, Antonino
    Rosset, Edi
    Vessella, Sergio
    MATEMATICHE, 2020, 75 (01): : 27 - 55
  • [5] Boundary homogenization and reduction of dimension in a Kirchhoff-Love plate
    Blanchard, Dominique
    Gaudiello, Antonio
    Mel'nyk, Taras A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 39 (06) : 1764 - 1787
  • [6] A NEW VERSION OF THE KIRCHHOFF-LOVE PLATE-THEORY
    LADEVEZE, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1991, 312 (03): : 151 - 156
  • [7] Optimal Three Spheres Inequality at the Boundary for the Kirchhoff-Love Plate's Equation with Dirichlet Conditions
    Alessandrini, Giovanni
    Rosset, Edi
    Vessella, Sergio
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 231 (03) : 1455 - 1486
  • [8] Global existence and exponential stability for a nonlinear thermoelastic Kirchhoff-Love plate
    Lasiecka, Irena
    Pokojovy, Michael
    Wan, Xiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 38 : 184 - 221
  • [9] Preliminary Report on the Theory of Elastic Circular Plate with no Kirchhoff-Love Assumptions
    钱伟长
    茹学萍
    Journal of Shanghai University, 1997, (01) : 1 - 14
  • [10] Equilibrium Problem for a Kirchhoff-Love Plate Contacting by the Side Edge and the Bottom Boundary
    Lazarev, Nyurgun P.
    Rudoy, Evgeny M.
    Nikiforov, Djulustan Ya.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2024, 17 (03): : 355 - 364