Best approximations and widths of classes of convolutions of periodic functions of high smoothness

被引:0
作者
Serdyuk A.S. [1 ]
机构
[1] Institute of Mathematics, Ukrainian Academy of Sciences, Kyiv
关键词
Periodic Function; Fourier Coefficient; Exponential Rate; Linear Width; High Smoothness;
D O I
10.1007/s11253-005-0251-2
中图分类号
学科分类号
摘要
We consider classes of 2π-periodic functions that are represented in terms of convolutions with fixed kernels Ψ β - whose Fourier coefficients tend to zero at exponential rate. We determine exact values of the best approximations of these classes in the uniform and integral metrics. In several cases, we determine the exact values of the Kolmogorov, Bernstein, and linear widths for these classes in the metrics of the spaces C and L. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:1120 / 1148
页数:28
相关论文
共 41 条
[21]  
Serdyuk A.S., On the best approximation on classes of convolutions of periodic functions, Theory of Approximation of Functions and Related Problems [In Ukrainian], pp. 172-194, (2002)
[22]  
Akhiezer N.I., Lectures on Approximation Theory [In Russian], (1947)
[23]  
Kolmogorov A.N., Über die beste Annaherung von Functionen einer gegebenen Functionenklasse, Ann. Math., 37, 2, pp. 107-110, (1936)
[24]  
Tikhomirov V.M., Widths of sets in functional spaces and approximation theory, Usp. Mat. Nauk, 15, 3, pp. 82-120, (1960)
[25]  
Borsuk K., Drei Satze uber die n-dimensionale euklidische Sphare, Fund. Math., 20, pp. 177-190, (1933)
[26]  
Tikhomirov V.M., The best methods of approximation and interpolation in the spaces C[-1, 1], Mat. Sb., 80, 2, pp. 290-304, (1969)
[27]  
Subbotin Y.N., Widths of the class W <sup>r</sup>L in L(0, 2π) and approximation by spline functions, Mat. Sb., 7, 1, pp. 43-52, (1970)
[28]  
Subbotin Y.N., Approximation by'spline'functions and estimates for widths, Tr. Mat. Inst. Akad. Nauk SSSR, 109, pp. 35-60, (1971)
[29]  
Makovoz Y.I., Widths of some functional classes in the space L, Izv. Akad. Nauk Belarus. SSR, Ser. Fiz.-Mat., 4, pp. 19-28, (1969)
[30]  
Korneichuk N.P., Extremal Problems in Approximation Theory [In Russian], (1976)