Best approximations and widths of classes of convolutions of periodic functions of high smoothness

被引:0
作者
Serdyuk A.S. [1 ]
机构
[1] Institute of Mathematics, Ukrainian Academy of Sciences, Kyiv
关键词
Periodic Function; Fourier Coefficient; Exponential Rate; Linear Width; High Smoothness;
D O I
10.1007/s11253-005-0251-2
中图分类号
学科分类号
摘要
We consider classes of 2π-periodic functions that are represented in terms of convolutions with fixed kernels Ψ β - whose Fourier coefficients tend to zero at exponential rate. We determine exact values of the best approximations of these classes in the uniform and integral metrics. In several cases, we determine the exact values of the Kolmogorov, Bernstein, and linear widths for these classes in the metrics of the spaces C and L. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:1120 / 1148
页数:28
相关论文
共 41 条
[1]  
Stepanets A.I., Classification and Approximation of Periodic Functions [In Russian], (1987)
[2]  
Favard J., Sur l'approximation des fonctions périodiques par des polynomes trigonométriques, C. R. Acad. Sci., 203, pp. 1122-1124, (1936)
[3]  
Favard J., Sur les meilleurs procédes d'approximations de certains classes de fonctions par des polynomes trigonométriques, Bull. Sci. Math., 61, pp. 209-224, (1937)
[4]  
Akhiezer N.I., Krein M.G., On the best approximation of differentiable periodic functions by trigonometric sums, Dokl. Akad. Nauk SSSR, 15, 3, pp. 107-112, (1937)
[5]  
Nagy B., Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen, i, Periodischer Fall, Berichte der Math.-Phys., Kl. Acad. Wiss. Leipzig, 90, pp. 103-134, (1938)
[6]  
Nikol'Skii S.M., Approximation of functions by trigonometric polynomials in the mean, Izv. Akad. Nauk SSSR, Ser. Mat., 10, pp. 207-256, (1946)
[7]  
Dzyadyk V.K., On the best approximation on a class of periodic functions possessing a bounded s-derivative (0 < s < 1), Izv. Akad. Nauk SSSR, Ser. Mat., 17, pp. 135-162, (1953)
[8]  
Dzyadyk V.K., On the best approximation on classes of periodic functions defined by kernels that are integrals of absolutely monotone functions, Izv. Akad. Nauk SSSR, Ser. Mat., 23, pp. 933-950, (1959)
[9]  
Dzyadyk V.K., On the best approximation on classes of periodic functions defined by integrals of a linear combination of absolutely monotone kernels, Mat. Zametki, 16, 5, pp. 691-701, (1974)
[10]  
Stechkin S.B., On the best approximation of some classes of periodic functions by trigonometric polynomials, Izv. Akad. Nauk SSSR, Ser. Mat., 20, pp. 643-648, (1956)