Uniform Continuity of Generalized Rational Approximations

被引:0
作者
K. S. Ryutin
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 2002年 / 71卷
关键词
generalized rational approximation; uniformly continuous ; -selection; Lipschitzian selection; Banach space;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is shown that there are no uniformly continuous multiplicative \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\varepsilon $$ \end{document}-selections from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C[0;1]$$ \end{document} on the set of generalized rational fractions of sufficiently general form for small \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\varepsilon $$ \end{document}.
引用
收藏
页码:236 / 244
页数:8
相关论文
共 5 条
[1]  
Konyagin S. V.(1988)On the continuity of operators of generalized rational approximation Mat. Zametki 44 404-131
[2]  
Tsar′kov I. G.(1990)The properties of sets possessing a continuous selection from the operator P Mat. Zametki 48 122-28
[3]  
Al′brekht P. V.(1994)The orders of the moduli of continuity of operators of almost best approximation Mat. Sb. 185 3-53
[4]  
Marinov A. V.(1994)Estimates of the stability of continuous selection for the metric near-projection Mat. Zametki 55 47-1220
[5]  
Ryutin K. S.(2000)The Lipschitz property of retractions and the operator of generalized rational approximation Fund. Prikl. Mat. 6 1205-undefined