Symmetry and monotonicity of positive solutions for Choquard equations involving a generalized tempered fractional p-Laplacian in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}

被引:0
作者
Linlin Fan
Linfen Cao
Peibiao Zhao
机构
[1] Nanjing University of Science and Technology,School of Mathematics and Statistics
[2] Henan Normal University,College of Mathematics and Information Science
关键词
Method of moving planes; A generalized tempered fractional ; -Laplacian; Radial symmetry; Monotonicity; 35R11 (primary); 35J92;
D O I
10.1007/s13540-023-00207-7
中图分类号
学科分类号
摘要
In this paper, we study a nonlinear system involving a generalized tempered fractional p-Laplacian in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}: (-Δ-λf)psu(x)+ωu(x)=Cn,t(|x|2t-n∗uq)uq-1,x∈Rn,u(x)>0,x∈Rn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} (-\varDelta -\lambda _{f})_{p}^{s}u(x)+\omega u(x)=C_{n,t}(|x|^{2t-n}*u^{q})u^{q-1}, &{}x\in {\mathbb {R}}^{n},\\ u(x)>0,&{}x\in {\mathbb {R}}^{n}, \end{array} \right. \end{aligned}$$\end{document}where 0<s,t<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s,\ t<1$$\end{document}, p>2,p-1<q<∞,n≥2,ω>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2,\ p-1<q<\infty ,\ n\ge 2,\ \omega >0$$\end{document}. By using the direct method of moving planes, we prove that the positive solutions of system above must be radially symmetric and monotone decreasing about some point in the whole space. In particular, decay at infinity and narrow region principle play an important role in getting the main results.
引用
收藏
页码:2757 / 2773
页数:16
相关论文
共 65 条
  • [51] Baleanu D(undefined)undefined undefined undefined undefined-undefined
  • [52] Wang PY(undefined)undefined undefined undefined undefined-undefined
  • [53] Chen L(undefined)undefined undefined undefined undefined-undefined
  • [54] Niu PC(undefined)undefined undefined undefined undefined-undefined
  • [55] Wang PY(undefined)undefined undefined undefined undefined-undefined
  • [56] Chen WX(undefined)undefined undefined undefined undefined-undefined
  • [57] Wang PY(undefined)undefined undefined undefined undefined-undefined
  • [58] Dai ZH(undefined)undefined undefined undefined undefined-undefined
  • [59] Cao LF(undefined)undefined undefined undefined undefined-undefined
  • [60] Wang XS(undefined)undefined undefined undefined undefined-undefined