Symmetry and monotonicity of positive solutions for Choquard equations involving a generalized tempered fractional p-Laplacian in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}

被引:0
作者
Linlin Fan
Linfen Cao
Peibiao Zhao
机构
[1] Nanjing University of Science and Technology,School of Mathematics and Statistics
[2] Henan Normal University,College of Mathematics and Information Science
关键词
Method of moving planes; A generalized tempered fractional ; -Laplacian; Radial symmetry; Monotonicity; 35R11 (primary); 35J92;
D O I
10.1007/s13540-023-00207-7
中图分类号
学科分类号
摘要
In this paper, we study a nonlinear system involving a generalized tempered fractional p-Laplacian in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{n}$$\end{document}: (-Δ-λf)psu(x)+ωu(x)=Cn,t(|x|2t-n∗uq)uq-1,x∈Rn,u(x)>0,x∈Rn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{ll} (-\varDelta -\lambda _{f})_{p}^{s}u(x)+\omega u(x)=C_{n,t}(|x|^{2t-n}*u^{q})u^{q-1}, &{}x\in {\mathbb {R}}^{n},\\ u(x)>0,&{}x\in {\mathbb {R}}^{n}, \end{array} \right. \end{aligned}$$\end{document}where 0<s,t<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s,\ t<1$$\end{document}, p>2,p-1<q<∞,n≥2,ω>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>2,\ p-1<q<\infty ,\ n\ge 2,\ \omega >0$$\end{document}. By using the direct method of moving planes, we prove that the positive solutions of system above must be radially symmetric and monotone decreasing about some point in the whole space. In particular, decay at infinity and narrow region principle play an important role in getting the main results.
引用
收藏
页码:2757 / 2773
页数:16
相关论文
共 65 条
  • [1] Benci V(2002)An eigenvalue problem for a quasilinear elliptic field equation J. Differential Equations 184 299-320
  • [2] Micheletti AM(2007)An extension problem related to the fractional Laplacian Comm. Partial Differential Equations 32 1245-1260
  • [3] Visetti D(2023)Symmetry and monotonicity of positive solutions for a system involving fractional Complex Var. Elliptic Equ. 68 667-679
  • [4] Caffarelli L(2021) & J. Korean Math. Soc. 58 1449-1460
  • [5] Silvestre L(2015)-Laplacian in a ball Adv. Math. 274 167-198
  • [6] Cao LF(2018)Radial symmetry of positive solutions to a class of fractional Laplacian with a singular nonlinearity Adv. Math. 335 735-758
  • [7] Fan LL(2017)Liouville theorems involving the fractional laplacian on a half space Adv. Math. 308 404-437
  • [8] Cao LF(2005)Maximum principles for the fractional Discrete Contin. Dyn. Syst. 12 347-354
  • [9] Wang XS(2006)-Laplacian and symmetry of solutions Comm. Pure Appl. Math. 59 330-343
  • [10] Chen WX(2019)A direct method of moving planes for the fractional Laplacian Discrete Contin. Dyn. Syst. 39 1257-1268