Specular interband Andreev reflections at van der Waals interfaces between graphene and NbSe2

被引:169
作者
Efetov, D. K. [1 ]
Wang, L. [2 ]
Handschin, C. [1 ]
Efetov, K. B. [3 ,4 ]
Shuang, J. [5 ]
Cava, R. [5 ]
Taniguchi, T. [6 ]
Watanabe, K. [6 ]
Hone, J. [2 ]
Dean, C. R. [1 ]
Kim, P. [1 ]
机构
[1] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[2] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[3] Ruhr Univ Bochum, Theoret Phys 3, D-44780 Bochum, Germany
[4] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[5] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
[6] Natl Inst Mat Sci, Namiki 1-1, Tsukuba, Ibaraki 3050044, Japan
关键词
TRANSPORT;
D O I
10.1038/NPHYS3583
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Electrons incident from a normal metal onto a superconductor are reflected back as holes-a process called Andreev reflection(1-3). In a normal metal where the Fermi energy is much larger than a typical superconducting gap, the reflected hole retraces the path taken by the incident electron. In graphene with low disorder, however, the Fermi energy can be tuned to be smaller than the superconducting gap. In this unusual limit, the holes are expected to be reflected specularly at the superconductor-graphene interface owing to the onset of interband Andreev processes, where the effective mass of the reflected holes changes sign(4,5). Here we present measurements of gate-modulated Andreev reflections across the low-disorder van der Waals interface formed between graphene and the superconducting NbSe2. We find that the conductance across the graphene-superconductor interface exhibits a characteristic suppression when the Fermi energy is tuned to values smaller than the superconducting gap, a hallmark for the transition between intraband retro Andreev reflections and interband specular Andreev reflections.
引用
收藏
页码:328 / U162
页数:5
相关论文
共 28 条
[1]  
ANDREEV AF, 1964, SOV PHYS JETP-USSR, V19, P1228
[2]   Colloquium: Andreev reflection and Klein tunneling in graphene [J].
Beenakker, C. W. J. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1337-1354
[3]  
Ben Shalom M, 2015, PREPRINT
[4]   TRANSITION FROM METALLIC TO TUNNELING REGIMES IN SUPERCONDUCTING MICRO-CONSTRICTIONS - EXCESS CURRENT, CHARGE IMBALANCE, AND SUPER-CURRENT CONVERSION [J].
BLONDER, GE ;
TINKHAM, M ;
KLAPWIJK, TM .
PHYSICAL REVIEW B, 1982, 25 (07) :4515-4532
[5]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[6]  
Calado VE, 2015, NAT NANOTECHNOL, V10, P761, DOI [10.1038/NNANO.2015.156, 10.1038/nnano.2015.156]
[7]   SUPERCONDUCTING ENERGY GAP OF NBSE2 [J].
CLAYMAN, BP ;
FRINDT, RF .
SOLID STATE COMMUNICATIONS, 1971, 9 (22) :1881-&
[8]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470
[9]  
de Gennes P. G., 1966, Superconductivity of Metals and Alloys
[10]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726