An Analytic Representation of the Second Symmetric Standard Elliptic Integral in Terms of Elementary Functions

被引:0
作者
Blanca Bujanda
José L. López
Pedro J. Pagola
Pablo Palacios
机构
[1] Universidad Pública de Navarra,Dpto. de Estadística, Informática y Matemáticas and INAMAT²
来源
Results in Mathematics | 2022年 / 77卷
关键词
Symmetric standard elliptic integrals; appell function; convergent expansions; uniform expansions; error bounds; 33E05; 41A58; 33C65;
D O I
暂无
中图分类号
学科分类号
摘要
We derive new convergent expansions of the symmetric standard elliptic integral RD(x,y,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_D(x,y,z)$$\end{document}, for x,y,z∈C\(-∞,0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x, y,z\in {\mathbb {C}}{\setminus }(-\infty ,0]$$\end{document}, in terms of elementary functions. The expansions hold uniformly for large and small values of one of the three variables x, y or z (with the other two fixed). We proceed by considering a more general parametric integral from which RD(x,y,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_D(x,y,z)$$\end{document} is a particular case. It turns out that this parametric integral is an integral representation of the Appell function F1(a;b,c;a+1;x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1(a;b,c;a+1;x,y)$$\end{document}. Therefore, as a byproduct, we deduce convergent expansions of F1(a;b,c;a+1;x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1(a;b,c;a+1;x,y)$$\end{document}. We also compute error bounds at any order of the approximation. Some numerical examples show the accuracy of the expansions and their uniform features.
引用
收藏
相关论文
共 38 条
[11]  
Carlson BC(2018)Uniform representations of the incomplete beta function in terms of elementary functions Elect. Trans. Num. Anal. 48 450-461
[12]  
Carlson BC(2012)Series expansions of symmetric elliptic integrals Math. Comp. 81 957-990
[13]  
Gustafson JL(1994)How elliptic integrals K and E arise from circles and points in the Minkowski plane J. Geom. 50 63-72
[14]  
Carlson BC(2000)Asymptotic expansions of symmetric standard elliptic integrals SIAM J. Math. Anal. 31 754-775
[15]  
Gustafson JL(2001)Uniform asymptotic expansions of symmetric elliptic integrals Constr. Approx. 17 535-559
[16]  
Ferreira C(2008)Asymptotic expansions of Mellin convolution integrals SIAM Rev. 50 275-293
[17]  
López JL(2018)Convergent expansions of the Bessel functions in terms of elementary functions Adv. Comput. Math. 44 277-294
[18]  
Pérez Sinusía E(2021)Uniform convergent expansions of integral transforms Math. Comput. 90 1357-1380
[19]  
Ferreira C(1945)Inequalities for the capacity of a condenser Amer. J. Math. 67 1-32
[20]  
López JL(1992)An application of elliptic integrals J. Math. Anal. Appl. 168 425-429