An Analytic Representation of the Second Symmetric Standard Elliptic Integral in Terms of Elementary Functions

被引:0
作者
Blanca Bujanda
José L. López
Pedro J. Pagola
Pablo Palacios
机构
[1] Universidad Pública de Navarra,Dpto. de Estadística, Informática y Matemáticas and INAMAT²
来源
Results in Mathematics | 2022年 / 77卷
关键词
Symmetric standard elliptic integrals; appell function; convergent expansions; uniform expansions; error bounds; 33E05; 41A58; 33C65;
D O I
暂无
中图分类号
学科分类号
摘要
We derive new convergent expansions of the symmetric standard elliptic integral RD(x,y,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_D(x,y,z)$$\end{document}, for x,y,z∈C\(-∞,0]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x, y,z\in {\mathbb {C}}{\setminus }(-\infty ,0]$$\end{document}, in terms of elementary functions. The expansions hold uniformly for large and small values of one of the three variables x, y or z (with the other two fixed). We proceed by considering a more general parametric integral from which RD(x,y,z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_D(x,y,z)$$\end{document} is a particular case. It turns out that this parametric integral is an integral representation of the Appell function F1(a;b,c;a+1;x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1(a;b,c;a+1;x,y)$$\end{document}. Therefore, as a byproduct, we deduce convergent expansions of F1(a;b,c;a+1;x,y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_1(a;b,c;a+1;x,y)$$\end{document}. We also compute error bounds at any order of the approximation. Some numerical examples show the accuracy of the expansions and their uniform features.
引用
收藏
相关论文
共 38 条
[1]  
Bujanda B(2018)Convergent expansions of the incomplete gamma functions in terms of elementary functions Anal. Appl. 16 435-448
[2]  
López JL(2019)Convergent expansions of the confluent hypergeometric functions in terms of elementary functions Math. Comp. 88 1773-1789
[3]  
Pagola P(1987)A table of elliptic integrals of the second kind Math. Comp. 49 595-606
[4]  
Bujanda B(1988)A table of elliptic integrals of the third kind Math. Comp. 51 267-280
[5]  
López JL(1989)A table of elliptic integrals: cubic cases Math. Comp. 53 327-333
[6]  
Pagola P(1991)A table of elliptic integrals: one quadratic factor Math. Comp. 56 267-280
[7]  
Carlson BC(1992)A table of elliptic integrals: two quadratic factors Math. Comp. 59 165-180
[8]  
Carlson BC(1985)Asymptotic expansion of the first elliptic integral SIAM J. Math. Anal. 16 1072-1092
[9]  
Carlson BC(1994)Asymptotic approximations for symmetric elliptic integrals SIAM J. Math. Anal. 25 288-303
[10]  
Carlson BC(2018)Uniform convergent expansions of the Gauss hypergeometric function in terms of elementary functions Int. Transf. Spec. Func. 29 942-954