Extendability of Ternary Linear Codes

被引:0
|
作者
Tatsuya Maruta
机构
[1] Osaka Women’s University,Department of Applied Mathematics
来源
关键词
ternary linear codes; extensions; diversity; doubly extendable; projective spaces;
D O I
暂无
中图分类号
学科分类号
摘要
There are four diversities for which ternary linear codes of dimension k ≥ 3, minimum distance d with gcd(3,d) = 1 are always extendable. Moreover, three of them yield double extendability when d ≡ 1 (mod 3). All the diversities are found for ternary linear codes of dimension 3 ≤ k ≤ 6. An algorithm how to find an extension from a generator matrix is also given.
引用
收藏
页码:175 / 190
页数:15
相关论文
共 50 条
  • [31] Optimal Ternary Linear Rate 1/2 Codes
    T. Aaron Gulliver
    Nikolai Senkevitch
    Designs, Codes and Cryptography, 2001, 23 : 167 - 172
  • [32] On optimal non-projective ternary linear codes
    Takenaka, Mito
    Okamoto, Kei
    Maruta, Tatsuya
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 842 - 854
  • [33] New ternary linear codes from projectivity groups
    Pace, Nicola
    DISCRETE MATHEMATICS, 2014, 331 : 22 - 26
  • [34] Some new results for optimal ternary linear codes
    Bouyukliev, I
    Simonis, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) : 981 - 985
  • [35] On Locality of Some Ternary Linear Codes of Dimension 6
    Yang, Ruipan
    Li, Ruihu
    Guo, Luobin
    Fu, Qiang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (10) : 2172 - 2175
  • [36] Linear ternary codes of strongly regular signed graphs
    Stanic, Zoran
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [37] The nonexistence of some ternary linear codes of dimension 6
    Maruta, T
    DISCRETE MATHEMATICS, 2004, 288 (1-3) : 125 - 133
  • [38] Optimal ternary linear rate 1/2 codes
    Gulliver, TA
    Senkevitch, N
    DESIGNS CODES AND CRYPTOGRAPHY, 2001, 23 (02) : 167 - 171
  • [39] On the nonexistence of ternary linear codes attaining the Griesmer bound
    Daiki Kawabata
    Tatsuya Maruta
    Designs, Codes and Cryptography, 2022, 90 : 947 - 956
  • [40] On the nonexistence of ternary linear codes attaining the Griesmer bound
    Kawabata, Daiki
    Maruta, Tatsuya
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (04) : 947 - 956