Partial regularity of minimizers of a functional involving forms and maps

被引:0
作者
Mariano Giaquinta
Min-Chun Hong
机构
[1] Scuola Normale Superiore,Department of Mathematics
[2] University of Queensland,undefined
来源
Nonlinear Differential Equations and Applications NoDEA | 2004年 / 11卷
关键词
35J45; 35J60; 58E20; Elliptic systems; partial regularity; harmonic maps; differential forms;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the partial regularity of minimizers of energy functionals such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1} {p}\int_\Omega {[\sigma (u)|dA|^p + \frac{1} {2}|\nabla u|^{2p} ]\,dx,} $$\end{document} where u is a map from a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \in {\text{R}}^n $$\end{document} into the m-dimensional unit sphere of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{R}}^{m + 1} $$\end{document} and A is a differential one-form in Ω.
引用
收藏
页码:469 / 490
页数:21
相关论文
empty
未找到相关数据