Khavinson Problem for Hyperbolic Harmonic Mappings in Hardy Space

被引:0
作者
Jiaolong Chen
David Kalaj
Petar Melentijević
机构
[1] Hunan Normal University,Key Laboratory of Computing and Stochastic Mathematics (Ministry of Education), School of Mathematics and Statistics
[2] University of Montenegro,Faculty of Natural Sciences and Mathematics
[3] University of Belgrade,Matematički Fakultet
来源
Potential Analysis | 2023年 / 59卷
关键词
Hyperbolic harmonic mappings; Hardy space; The generalized Khavinson conjecture; Estimates of the gradient; Primary 31B05; Secondary 42B30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we partly solve the generalized Khavinson conjecture in the setting of hyperbolic harmonic mappings in Hardy space. Assume that u=PΩ[ϕ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u=\mathcal {P}_{\Omega }[\phi ]$\end{document} and ϕ∈Lp(∂Ω,ℝ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\phi \in L^{p}(\partial {\Omega }, \mathbb {R})$\end{document}, where p∈[1,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$p\in [1,\infty ]$\end{document}, PΩ[ϕ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {P}_{\Omega }[\phi ]$\end{document} denotes the Poisson integral of ϕ with respect to the hyperbolic Laplacian operator Δh in Ω, and Ω denotes the unit ball Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {B}^{n}$\end{document} or the half-space ℍn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {H}^{n}$\end{document}. For any x ∈Ω and l∈Sn−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l\in \mathbb {S}^{n-1}$\end{document}, let CΩ,q(x) and CΩ,q(x;l) denote the optimal numbers for the gradient estimate ∇u(x)≤CΩ,q(x)ϕLp(∂Ω,ℝ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left |\nabla u(x)\right |\leq \mathbf {C}_{\Omega ,q}(x)\left \|\phi \right \|{\!}_{L^{p}(\partial {\Omega }, \mathbb {R})} $\end{document} and the gradient estimate in the direction l〈∇u(x),l〉≤CΩ,q(x;l)ϕLp(∂Ω,ℝ),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left |\langle \nabla u(x),l\rangle \right |\leq \mathbf {C}_{\Omega ,q}(x;l)\left \|\phi \right \|{\!}_{L^{p}(\partial {\Omega }, \mathbb {R})}, $\end{document} respectively. Here q is the conjugate of p. If q∈[1,∞]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q\in [1,\infty ]$\end{document}, then CBn,q(0)≡CBn,q(0;l)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf {C}_{\mathbb {B}^{n},q}(0)\equiv \mathbf {C}_{\mathbb {B}^{n},q}(0;l)$\end{document} for any l∈Sn−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$l\in \mathbb {S}^{n-1}$\end{document}. If q=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q=\infty $\end{document}, q = 1 or q∈[2K0−1n−1+1,2K0n−1+1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q\in [\frac {2K_{0}-1}{n-1}+1,\frac {2K_{0}}{n-1}+1]$\end{document} with K0∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K_{0}\in \mathbb {N} $\end{document}, then CBn,q(x)=CBn,q(x;±x|x|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf {C}_{\mathbb {B}^{n},q}(x)=\mathbf {C}_{\mathbb {B}^{n},q}(x;\pm \frac {x}{|x|})$\end{document} for any x∈Bn∖{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in \mathbb {B}^{n}\backslash \{0\}$\end{document}, and Cℍn,q(x)=Cℍn,q(x;±en)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf {C}_{\mathbb {H}^{n},q}(x)=\mathbf {C}_{\mathbb {H}^{n},q}(x;\pm e_{n})$\end{document} for any x∈ℍn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in \mathbb {H}^{n}$\end{document}. However, if q∈(1,nn−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$q\in (1,\frac {n}{n-1})$\end{document}, then CBn,q(x)=CBn,q(x;tx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf {C}_{\mathbb {B}^{n},q}(x)=\mathbf {C}_{\mathbb {B}^{n},q}(x;t_{x})$\end{document} for any x∈Bn∖{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in \mathbb {B}^{n}\backslash \{0\}$\end{document}, and Cℍn,q(x)=Cℍn,q(x;ten)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf {C}_{\mathbb {H}^{n},q}(x)=\mathbf {C}_{\mathbb {H}^{n},q}(x;t_{e_{n}})$\end{document} for any x∈ℍn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x\in \mathbb {H}^{n}$\end{document}. Here tw denotes any unit vector in ℝn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {R}^{n}$\end{document} such that 〈tw,w〉 = 0 for w∈ℝn∖{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$w\in \mathbb {R}^{n}\setminus \{0\}$\end{document}.
引用
收藏
页码:1205 / 1234
页数:29
相关论文
共 24 条
[1]  
Burgeth B(1992)A Schwarz lemma for harmonic and hyperbolic-harmonic functions in higher dimensions Manuscr. Math. 77 283-291
[2]  
Chen J(2021)A Schwarz lemma for hyperbolic harmonic mappings in the unit ball Math. Scand. 127 617-642
[3]  
Kalaj D(2018)On Lipschitz continuity of solutions of hyperbolic Poisson’s equation Calc. Var. Partial Differ. Equ. 57 32-840
[4]  
Chen J(1989)The Bloch constant of bounded harmonic mappings Indiana Univ. Math. J. 38 829-570
[5]  
Huang M(2017)A proof of Khavinson conjecture in $\mathbb {R}^{4}$ℝ4 Bull. Lond. Math. Soc. 49 561-1183
[6]  
Rasila A(2013)Optimal estimates for the gradient of harmonic functions in the unit disk Complex Anal. Oper. Theory 7 1167-165
[7]  
Wang X(2012)On harmonic functions and the Schwarz lemma Proc. Am. Math. Soc. 140 161-220
[8]  
Colonna F(1992)An extremal problem for harmonic functions in the ball Canad. Math. Bull. 35 218-336
[9]  
Kalaj D(2009)Some sharp estimates for the gradient of bounded or semibounded harmonic functions Funct. Diff. Eq. 16 315-440
[10]  
Kalaj D(2010)Optimal estimates for the gradient of harmonic functions in the multidimensional half-space Discrete Contin. Dyn. Syst. 28 425-187